scholarly journals Natural fire regime: a guide for sustainable management of the Canadian boreal forest

Silva Fennica ◽  
2002 ◽  
Vol 36 (1) ◽  
Author(s):  
Yves Bergeron ◽  
Alain Leduc ◽  
Brian Harvey ◽  
Sylvie Gauthier
2004 ◽  
Vol 80 (4) ◽  
pp. 458-462 ◽  
Author(s):  
Yves Bergeron

Over the past decade, there has been an increasing interest in the development of forest management approaches that are based on an understanding of historical natural disturbance dynamics. The rationale for such an approach is that management to favour landscape compositions and stand structures similar to those of natural ecosystems should also maintain biological diversity and essential ecological functions. In fire-dominated landscapes, this approach is possible only if current and future fire frequencies are sufficiently low, in comparison to pre-industrial fire frequency, that we can substitute fire with forest management. I address this question by comparing current and future fire frequency to historical reconstruction of fire frequency from studies in the Canadian boreal forest. Current and simulated future fire frequencies using 2× and 3×CO2 scenarios are lower than the historical fire frequency for most sites, suggesting that forest management could potentially be used to recreate the forest age structure of fire-controlled pre-industrial landscapes. Current even-aged management, however, tends to reduce forest variability: for example, fully regulated, even-aged management will tend to truncate the natural forest stand age distribution and eliminate overmature and old-growth forests from the landscape. The development of silvicultural techniques that maintain a spectrum of forest compositions and structures at different scales in the landscape is one avenue to maintain this variability. Key words: boreal forest, even aged management, fire regime, old-growth forests, climate change, partial cutting


2018 ◽  
Vol 26 (3) ◽  
pp. e015
Author(s):  
José R. Arévalo ◽  
Eduardo Estrada ◽  
Juan A. Encina ◽  
José A. Villareal ◽  
Job R. Escobedo ◽  
...  

Aim of the study: To analyze the impact of the 1998 wildfire on dwarf pine (Pinus culminicola) population stands 18 years after the fire.Area of study: Cerro el Potosí, Nuevo León (México)Material and methods: We measured regeneration, biovolume of individuals, diversity and species composition in unburned and burned plots randomly selected in the area.Main results: Recovery was very slow, with limited dense natural regeneration and very slow growth. Significant differences between control and burned plots were found with respect to regeneration, species composition, evenness and soil nutrients, suggesting that fire could promote natural regeneration and biodiversity in these communities.Research highlights: Management efforts are necessary to maintain a natural fire regime and ensure grazing exclusion in order to favor the conservation of the community dominated by this rare species P. culminicola.


2019 ◽  
Vol 55 (7) ◽  
pp. 5751-5769 ◽  
Author(s):  
Gabrielle F. S. Boisramé ◽  
Sally E. Thompson ◽  
Christina (Naomi) Tague ◽  
Scott L. Stephens

Author(s):  
Eric S. Kasischke ◽  
David L. Verbyla

Fire is ubiquitous throughout the global boreal forest (Wein 1983, Payette 1992, Goldammer and Furyaev 1996, Kasischke and Stocks 2000). The inter- and intra-annual patterns of fire in this biome depend on several interrelated factors, including the quantity and quality of fuel, fuel moisture, and sources of ignition. Fire cycles in different boreal forest types vary between 25 and >200 years (Heinselman 1981, Yarie 1981, Payette 1992, Conard and Ivanova 1998). Although the increased presence of humans in some regions of boreal forest has undoubtedly changed the fire regime (DeWilde 2003), natural fire is still a dominant factor in ecosystem processes throughout this biome. Boreal forest fires are similar to those of other forests in that they vary between surface and crown fires, depending on forest type and climatic factors. Surface fires kill and consume most of the understory vegetation, as well as portions of the litter or duff lying on the forest floor, resulting in varying degrees of mortality of canopy and subcanopy trees. Crown fires consume large amounts of the smaller plant parts (or fuels) present as leaves, needles, twigs, and small branches and kill all trees. These fires are important in initiating secondary succession (Lutz 1956, Heinselman 1981, Van Cleve and Viereck 1981, Van Cleve et al. 1986, Viereck 1983, Viereck et al. 1986). Unlike fires in other forest types, smoldering ground fires in the boreal forest can combust a significant fraction of the deep organic (fibric and humic) soils in forests overlying permafrost (Dyrness and Norum 1983, Landhauesser and Wein 1993, Kasischke et al. 2000a, Miyanishi and Johnson 2003). During periods of drought, when water tables are low, or prior to spring thaw, organic soils in peatlands can become dry enough to burn, as well (Zoltai et al. 1998, Turetsky and Wieder 2001, Turetsky et al. 2002).


2019 ◽  
Vol 27 (3) ◽  
pp. 318-332 ◽  
Author(s):  
Gillian E. Fuss ◽  
James W.N. Steenberg ◽  
Marian L. Weber ◽  
M.A. (Peggy) Smith ◽  
Irena F. Creed

The Canadian boreal forest is primarily public land, owned and managed by provincial governments on behalf of the public interest. Boreal forest governance consists of a complex patchwork of federal and provincial legislation, policies, tenures, and delegated authorities designed to achieve multiple (and often conflicting) social, ecological, and economic objectives. We examine the implications of boreal governance arrangements for sustainable management of ecosystem services. The paper shows how current multi-level governance arrangements that evolved from Canada’s Constitution Act are not effective at managing the cross-scale and cross-sectoral challenges of ecosystem services and have created a crisis of legitimacy for forest decisions. We show how the rise of nonstate arrangements, marketization, and decentralization are partly a response to governance gaps for ecosystem services as well as a reflection of global trends in forest governance. Past trends related to governance themes (the role and scope of government, the level of integration and coordination, Indigenous empowerment, and geopolitical influences) are used to motivate future governance scenarios.


2007 ◽  
Vol 83 (1) ◽  
pp. 72-83 ◽  
Author(s):  
Annie Belleau ◽  
Yves Bergeron ◽  
Alain Leduc ◽  
Sylvie Gauthier ◽  
Andrew Fall

It is now recognized that in the Canadian boreal forest, timber harvesting activities have replaced wildfires as the main stand-replacing disturbance. Differences in landscape patterns derived from these two sources of disturbance have, however, raised concerns that the way forest harvesting has been dispersed is potentially shifting patterns away from the natural range. In the context of natural disturbance-based management, we used a spatially explicit model designed to capture general fire regimes in order to quantify temporal variability associated with regenerating areas (burnt areas of 25 years or younger), and to develop strategic objectives for harvest agglomeration sizes and dispersion. We first evaluated temporal variability in the proportion of stands younger than 100 years (assumed to be even-aged stands) for various fire regimes (seven fire cycles: 50 to 400 years, and three mean fires sizes: 3000, 15 000 and 60 000 ha). Secondly, we quantified the size distribution and dispersion of regenerating areas for each fire regime. As expected by theoretical fire frequencies and size distributions, the importance of even-aged stands at the forest management unit level was found to decrease with longer fire cycles. However, the temporal variability associated with these proportions is shown to increase with mean fire size. It was also observed that the size distribution and dispersion of regenerating areas was primarily influenced by mean fire size. Based on these observations, natural disturbance-based management objectives were formulated, providing guidelines on harvest agglomeration size and dispersion. Key words: temporal variability, boreal forest, fire regime, forest management, age distribution, fire size distribution, clearcut agglomeration size distribution


Fire Ecology ◽  
2008 ◽  
Vol 4 (2) ◽  
pp. 115-132 ◽  
Author(s):  
Richard L. Hutto ◽  
Courtney J. Conway ◽  
Victoria A. Saab ◽  
Jeffrey R. Walters

2011 ◽  
Vol 222 (9) ◽  
pp. 1639-1650 ◽  
Author(s):  
Brean W. Duncan ◽  
John F. Weishampel ◽  
Seth H. Peterson

Sign in / Sign up

Export Citation Format

Share Document