scholarly journals One New Flavonoid Glycoside from Chrysanthemum morifolium

2013 ◽  
Vol 25 (4) ◽  
pp. 2335-2336 ◽  
Author(s):  
Weiming Cheng ◽  
Xiaqian Cheng ◽  
Yongchi Zeng ◽  
Wenting Zhang
BMC Chemistry ◽  
2019 ◽  
Vol 13 (1) ◽  
Author(s):  
Wei Zhang ◽  
Yafeng Zuo ◽  
Fengqing Xu ◽  
Tongsheng Wang ◽  
Jinsong Liu ◽  
...  

Abstract A form of β-glucosidase was isolated and purified from fresh Chrysanthemum morifolium (Ramat.) Tzvel. ‘Boju’ (Boju) and its enzymatic properties explored in this study. The purified enzyme and Boju flavonoids were reacted in a water bath to ascertain the composition of the reactants. Flavonoid glycoside and aglycon concentrations in Boju varied significantly depending on processing method. The concentration of flavonoid glycosides in Boju decreased and flavonoid aglycons increased due to heat-activation of β-glucosidase which hydrolyzed the flavonoid glycosides in Boju to aglycons.


Agronomy ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1111
Author(s):  
Natalia Miler ◽  
Iwona Jedrzejczyk ◽  
Seweryn Jakubowski ◽  
Janusz Winiecki

Classical mutation breeding using physical factors is a common breeding method for ornamental crops. The aim of our study was to examine the utility of ovaries excised from irradiated inflorescences of Chrysanthemum × morifolium (Ramat.) as explants for breeding purposes. We studied the in vitro regeneration capacity of the ovaries of two chrysanthemum cultivars: ‘Profesor Jerzy’ and ‘Karolina’ preceded by irradiation with high-energy photons (total dose 5, 10 and 15 Gy) and high-energy electrons (total dose 10 Gy). Growth and inflorescence parameters of greenhouse acclimatized regenerants were recorded, and ploidy level was estimated with flow cytometry. The strong impact of genotype on regeneration efficiency was recorded—cultivar ‘Karolina’ produced only 7 viable shoots, while ‘Profesor Jerzy’ produced totally 428 shoots. With an increase of irradiation dose, the regeneration decreased, the least responsive were explants irradiated with 15 Gy high-energy photons and 10 Gy high-energy electrons. Regenerants of ‘Profesor Jerzy’ obtained from these explants possessed shorter stem and flowered later. The highest number of stable, color and shape inflorescence variations were obtained from explants treated with 10 Gy high-energy photons. Variations of inflorescences were predominantly changes of shape—from full to semi-full. New color phenotypes were dark yellow, light yellow and pinkish, among them only the dark yellow phenotype remained stable during second year cultivation. None of the regenerants were haploid. The application of ovaries irradiated within the whole inflorescence of chrysanthemum can be successfully applied in the breeding programs, provided the mother cultivar regenerate in vitro efficiently.


2021 ◽  
Vol 11 (5) ◽  
Author(s):  
Guoju Hong ◽  
Zhenqiu Chen ◽  
Xiaorui Han ◽  
Lin Zhou ◽  
Fengxiang Pang ◽  
...  

Molecules ◽  
2021 ◽  
Vol 26 (2) ◽  
pp. 494
Author(s):  
Susanne Neugart ◽  
Christiane Bumke-Vogt

Recently, there have been efforts to use ultraviolet-B radiation (UV-B) as a biotechnological tool in greenhouses. Leafy Brassica species are mainly considered for their ability to synthesize glucosinolates and are valued as baby salads. They also have a remarkable concentration of chemically diverse flavonoid glycosides. In this study, the effect of short-term UV-B radiation at the end of the production cycle was investigated without affecting plant growth. The aim was to verify which exposure and adaptation time was suitable and needs to be further investigated to use UV as a biotechnological tool in greenhouse production of Brassica species. It is possible to modify the flavonoid glycoside profile of leafy Brassica species by increasing compounds that appear to have potentially high antioxidant activity. Exemplarily, the present experiment shows that kaempferol glycosides may be preferred over quercetin glycosides in response to UV-B in Brassica rapa ssp. chinensis, for example, whereas other species appear to prefer quercetin glycosides over kaempferol glycosides, such as Brassica oleracea var. sabellica or Brassica carinata. However, the response to short-term UV-B treatment is species-specific and conclusions on exposure and adaptation time cannot be unified but must be drawn separately for each species.


Sign in / Sign up

Export Citation Format

Share Document