scholarly journals An Efficient and Novel Ammonia Sensor Based on Polypyrrole/Tin Oxide/MWCNT Nanocomposite

2020 ◽  
Vol 32 (6) ◽  
pp. 1505-1510
Author(s):  
Ahmad Husain ◽  
Mohd Urooj Shariq ◽  
Anees Ahmad

In present study, the synthesis and characterization of a novel polypyrrole (PPy)/tin oxide (SnO2)/MWCNT nanocomposite along with pristine polypyrrole is reported. These materials have been studied for their structural and morphological properties by FT-IR spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) techniques. PPy/SnO2/MWCNT nanocomposite has been converted into a pellet-shaped sensor, and its ammonia sensing studies were carried out by calculating the variation in the DC electrical conductivity at different concentration of ammonia ranging from 10 to 1500 ppm. The sensing response of the sensor was determined at 1500, 1000, 500, 200, 100 and 10 ppm and found to be 70.4, 66.1, 62.2, 55.4, 50.8 and 39.7%, respectively The sensor showed a complete reversibility at lower concentrations along with excellent selectivity and stability. Finally, a sensing mechanism was also proposed involving polarons (charge carriers) of polypyrrole and lone pairs of ammonia molecules

2020 ◽  
Vol 32 (8) ◽  
pp. 1961-1966
Author(s):  
Ahmad Husain ◽  
Mohd Urooj Shariq ◽  
Sharique Ahmad ◽  
Anees Ahmad ◽  
Faiz Mohammad

Herein, the synthesis and characterization of a novel polypyrrole (PPy)/zinc oxide (ZnO)/SWCNT nanocomposite together with pristine polypyrrole is reported. These as-prepared materials have been characterized by FT-IR spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and thermogravimetric analysis (TGA) techniques. The PPy/ ZnO/SWCNT nanocomposite is used as a pellet-shaped ammonia sensor. The sensing response is calculated in terms of variation in the DC electrical conductivity at different concentration of ammonia ranging from 50 ppm to 2000 ppm. The sensing response of the sensor is determined at 2000, 1000, 500, 400, 300, 200, 100 and 50 ppm and found to be 76.3, 60.5, 54.8, 52.6, 50.2, 48.5, 40.5 and 36.6%, respectively The sensor displays excellent reversibility along with very high selectivity and stability. Finally, a sensing mechanism is also proposed involving polarons (charge carriers) of polypyrrole and lone pairs of electrons of ammonia molecules.


2013 ◽  
Vol 32 (2) ◽  
pp. 157-162 ◽  
Author(s):  
Mahdiyeh Esmaeili-Zare ◽  
Masoud Salavati-Niasari ◽  
Davood Ghanbari

AbstractMercury selenide nanostructures were synthesized from the reaction of N, N′-bis(salicylidene)propane-1,3-diamine mercury complex, (Hg(Salpn)) as a novel precursor, via sonochemical method. The effect of different surfactant on the morphology and particle size of the products was investigated. Products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared (FT-IR) spectroscopy and X-ray energy dispersive spectroscopy (EDS).


2013 ◽  
Vol 655-657 ◽  
pp. 1927-1930 ◽  
Author(s):  
Guang Na Zhang ◽  
Zhi Yue Xia ◽  
Jian Ming Ouyang ◽  
Li Kuan

The presence of crystallites in urine is closely related to stones formation. In this article, the components, morphology of nano- and micro-crystallites in urines of 20 uric acid (UA) stone formers as well as their relationship with the formation of UAstones were comparatively studied using X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The main constituent of urinary crystallites was uric acid. Their particle size distribution was highly uneven, ranging from several nanometers to several tens of micrometers, and obvious aggregation was observed. These results showed that there was close relationship among stone components, urinary crystallites composition and urine pH.


2000 ◽  
Vol 15 (10) ◽  
pp. 2076-2079
Author(s):  
Chika Nozaki ◽  
Takashi Yamada ◽  
Kenji Tabata ◽  
Eiji Suzuki

Synthesis of a rutile-type lead-substituted tin oxide with (110) face was investigated. The characterization was performed by x-ray diffraction, scanning electron microscopy, transmission electron microscopy, energy dispersive x-ray spectroscopy, infrared spectroscopy, x-ray photoelectron spectroscopy, and Brunauer–Emmett–Teller surface area measurements. The homogeneous rutile-type lead-substituted tin oxide was obtained until 4.1 mol% of tin was substituted with lead. The surface of obtained oxide had a homogeneously lead-substituted (110) face.


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Chaturbhuj K. Saurabh ◽  
Asniza Mustapha ◽  
M. Mohd. Masri ◽  
A. F. Owolabi ◽  
M. I. Syakir ◽  
...  

Cellulose nanofibers (CNF) were isolated fromGigantochloa scortechiniibamboo fibers using sulphuric acid hydrolysis. This method was compared with pulping and bleaching process for bamboo fiber. Scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, and thermogravimetric analysis were used to determine the properties of CNF. Structural analysis by FT-IR showed that lignin and hemicelluloses were effectively removed from pulp, bleached fibers, and CNF. It was found that CNF exhibited uniform and smooth morphological structures, with fiber diameter ranges from 5 to 10 nm. The percentage of crystallinity was significantly increased from raw fibers to cellulose nanofibers, microfibrillated, along with significant improvement in thermal stability. Further, obtained CNF were used as reinforcement material in epoxy based nanocomposites where tensile strength, flexural strength, and modulus of nanocomposites improved with the addition of CNF loading concentration ranges from 0 to 0.7%.


2015 ◽  
Vol 1786 ◽  
pp. 57-63
Author(s):  
Vasuda Bhatia ◽  
Bhawana Singh ◽  
Vinod K. Jain

ABSTRACTNano-graphite oxide has been synthesized from graphite flakes using modified Hummer’s method. Fourier transform infrared (FT-IR) data, x-ray diffraction (XRD) and transmission electron microscopy (TEM) revealed functionalization of the synthesised nano-graphitic platelets with oxygenated bonds. Using thermal embedding technique for the fabrication of self-assembled films, electrodes of nano-graphite oxide have been fabricated for enzyme free detection of cholesterol electrochemically. The electrodes provided a linear response for the enzyme less detection in the range of 50mg/dl to 500mg/dl with a correlation coefficient, R, of 0.99784 and sensitivity of 1.0587 µA/mg.


2021 ◽  
Author(s):  
Govindaraju K ◽  
K. Vijai Anand ◽  
S. Muthamilselvan ◽  
M. Kannan ◽  
M. Elanchezhiyan

Abstract In this study, a simple environmental benign approach have been adopted for the preparation of highly luminescent (blue emitting) water soluble carbon nano-dots using Pongammia pinnata (Pp) leaves via hydrothermal technique. The prepared Pp-carbon nano- dots were characterized using UV-vis spectroscopy, fluorescence spectroscopy, Fourier transform infrared (FT-IR) spectroscopy, transmission electron microscopy (TEM) and dynamic light scattering (DLS) measurements. The Pp-carbon nano-dots are spherical in shape with an average size of 32 nm.


2016 ◽  
Vol 25 (6) ◽  
pp. 096369351602500 ◽  
Author(s):  
Ruimin Fu ◽  
Mingfu Zhu

Nowadays, the hummers method for preparation of graphene oxide (GO) was improved. The grapheme oxide @ Fe3O4 magnetic nanocomposites were synthesized by co-precipitation method. After analysing the morphology and structure of obtained nanocomposites by X-ray diffraction (XRD), transmission electron microscope (TEM) and Fourier transform infrared (FT-IR) spectroscopy, the result was shown as follows. The particle size of Fe3O4 in nanocomposites is 30 nm. Many functional groups are found in grapheme oxide, and such groups could be used to bind with the drug. In the test for magnetic properties, the nanocomposites gathered rapidly in the vicinity of the permanent magnet. The nanocomposites, with high superparamagnetism, can be used in the following applications: drug targeting transports, drug carrier, and diagnosis assistant system.


2017 ◽  
Vol 2017 ◽  
pp. 1-9
Author(s):  
Xiaozhou Su ◽  
Lei Li ◽  
Weihan Huang

Complex nanomicelles were prepared by sericin and type A gelatin with molecular weight of 5789 Da and 128664 Da separately. The assembling conditions were as follows: mass ratio (sericin/gelatin) was 1 : 1, protein concentration was 0.5%, temperature was 35°C, and assembling time was 18 hours. Scanning electron microscopy (SEM), atomic force microscopy (AFM), transmission electron microscopy (TEM), Fourier transform infrared (FT-IR) spectroscopy, differential scanning calorimetry (DSC), and dynamic light scattering (DLS) were conducted to observe and characterize the complex nanomicelles. Results showed that the complex sericin/gelatin micelles was a kind of nanospindle micelles. The micelles had high electrochemical stability, thermal stability, antidilution stability, and storage stability.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
G. Sathiyadevi ◽  
B. Loganathan ◽  
B. Karthikeyan

The solvent-mediated eco-friendly monodispersed Ag/Pd bimetallic nanocomposites (BNCs) having thick core and thin shell have been prepared through novel green chemical solvent reduction method. Reducing solvent, dimethyl formamide (DMF) is employed for the controlled green synthesis. Characterization of the synthesized Ag/Pd BNCs has been done by x-ray diffraction (XRD) studies, high-resolution scanning electron microscopy (HR-SEM), energy-dispersive X-ray analysis (EDX), and high-resolution transmission electron microscopy (HR-TEM) with selected area electron diffraction (SAED) pattern. The nature of the interaction of L-cysteine with Ag/Pd BNCs has been studied by using surface plasmon spectroscopy, Fourier transform-infrared spectroscopy (FT-IR), cyclic voltammetry (CV), and theoretical methods.


Sign in / Sign up

Export Citation Format

Share Document