scholarly journals Computational Design, Spectral, NBO, DOS, Bioactivity Evaluation, ADMET Analysis, Third-Order non-linear Optical and Quantum Chemical Investigations on Hydrogen Bonded Novel Organic Molecular Complex of 4-[Bis[2-(acetyloxy)ethyl]amino]benzaldehyde (4B2AEAB) Derivatives for Opto-Electronic Applications

2020 ◽  
Vol 32 (11) ◽  
pp. 2793-2820
Author(s):  
Ashutosh Kumar ◽  
Anil Mishra

In this paper, the authors reported a theoretical investigation on molecular structure, geometry optimization, global and local chemical reactivity descriptors calculations, NBO study, DOS, non-linear optical behaviour and vibrational wavenumbers of the novel 4-[bis[2- (acetyloxy)ethyl]amino]benzaldehyde (4B2AEAB) were carried out by DFT (B3LYP and B3PW91) methods with 6-31+G (d, p) basis set in water solvent. The calculated vibrational wavenumbers are found to be in good agreement with experimental FT-IR spectra and PED analysis using GaussView 5.0 and VEDA 4 program. The UV-Vis absorption spectrum of 4B2AEAB was calculated by using TD-DFT/B3LYP/6-31+G(d,p) in gas phase, water, CHCl3, DMSO and CH2Cl2 solvents using CPCM model and λmax in range of 354.16, 341.35, 343.74, 342.18 and 342.64 nm, respectively. The density of state (DOS spectrum) of the compound in term of HOMOs and LUMOs and MESP were calculated and analyzed. The temperature effects on the thermodynamic properties are also discussed. The calculated 1H NMR and 13C NMR chemical shift using GIAO method and solvent effect are investigated by B3LYP/6-31+G(d,p) in gas phase, chloroform, water, DMSO and CH2Cl2 solvents and correlate with experimental chemical shifts. The dipole moment, polarizability and the first static hyperpolarizability values show that the 4B2AEAB molecule is active non-linear optical (NLO) material. The nucleophilic and electrophilic reactive sites in the 4B2AEAB and its derivatives were analyzed by Fukui function analysis using Mulliken charge. The charge transfer, conjugative interactions and delocalization of electron density are analyzed by natural bond orbital (NBO) analysis. The biological properties and ADMET study of 4B2AEAB and its derivatives are also discussed.

2016 ◽  
Vol 21 (1) ◽  
pp. 1-9 ◽  
Author(s):  
Bhawani Datta Joshi

Aristolochic acids (AAs) have been used in the treatment of oedema in  Chinese herb medicine  since  long  ago. In this paper, molecular electrostatic potential, chemical reactivity  and non linear optical properties  of  aristolochic  acid  I  (AA  I)  have  been  analyzed  using  density  functional  theory  employing  6-311++G(d,p)  basis set.  The chemical reactivity of the molecule has been explained with the help of chemical reactivity descriptors, molar refractivity and the molecular electrostatic potential surface (ESP).  The calculated dipole moment and first order hyperpolarizability show that the molecule possesses non-linear optical property.Journal of Institute of Science and TechnologyVolume 21, Issue 1, August 2016, page: 1-9


BIBECHANA ◽  
2016 ◽  
Vol 14 ◽  
pp. 86-97 ◽  
Author(s):  
Bhawani Dutt Joshi

Alkaloids are a group of naturally occurring chemical compounds and show immense potential of medicinal uses in traditional systems. In this work, a computational study on an alkaloid aristolochc acidid II (AA II) is presented using density functional theory, B3LYP functional employing 6-311G (d,p) basis set. Natural bond orbital analysis has been carried out to investigate the various conjugative and hyperconjugative interactions within the molecule and their second-order stabilisation energy (E(2)). The local nucleophilic reactivity descriptors such as Fukui functions (f+k, f-k), local softness (s+k, s-k) and electrophilicity indices (ω+k,ω-k) analyses have been carried out to determine the reactive sites within the molecule. The non-linear optical properties have been calculated using the same basis set. The calculated value of the first order hyperpolarisability (β0), suggests that the investigated molecule is an attractive object in future for non-linear optical properties.


2021 ◽  
Vol 4 (4) ◽  
pp. 236-251
Author(s):  
A. S. Gidado ◽  
L. S. Taura ◽  
A. Musa

Pyrene (C16H10) is an organic semiconductor which has wide applications in the field of organic electronics suitable for the development of organic light emitting diodes (OLED) and organic photovoltaic cells (OPV). In this work, Density Functional Theory (DFT) using Becke’s three and Lee Yang Parr (B3LYP) functional with basis set 6-311++G(d, p) implemented in Gaussian 03 package was  used to compute total energy, bond parameters, HOMO-LUMO energy gap, electron affinity, ionization potential, chemical reactivity descriptors, dipole moment, isotropic polarizability (α), anisotropy of polarizability ( Δ∝) total first order hyper-polarizability () and second order hyperpolarizability (). The molecules used are pyrene, 1-chloropyrene and 4-chloropyrene  in gas phase and in five different solvents: benzene, chloroform, acetone, DMSO and water. The results obtained show that solvents and chlorination actually influenced the properties of the molecules. The isolated pyrene in acetone has the largest value of HOMO-LUMO energy gap of and is a bit closer to a previously reported experimental value of  and hence is the most stable. Thus, the pyrene molecule has more kinetic stability and can be described as low reactive molecule. The calculated dipole moments are in the order of 4-chloropyrene (1.7645 D) < 1-chloropyrene (1.9663 D) in gas phase. The anisotropy of polarizability ( for pyrene and its derivatives were found to increase with increasing polarity of the solvents.  In a nutshell, the molecules will be promising for organic optoelectronic devices based on their computed properties as reported by this work.


2020 ◽  
Vol 32 (3) ◽  
pp. 706-726
Author(s):  
Ashutosh Kumar ◽  
Anjali Pandey ◽  
Anil Mishra

In this paper, a complete quantum chemical calculation has been done to describe the relevant structural aspects of novel 2,3-bis[(1-methyl-1H-imidazole-2-yl)sulfanyl]quinoxaline with combination of DFT/B3LYP method 6-311++G(d,p) basis set in gas phase and in solvent phase. The molecular structure was examined by using IR, 1H & 13C NMR and UV-visible techniques and solvent effect on spectroscopic properties are also discussed. The vibrational assignments are analyzed by PED using Gauss View 5.0 and VEDA 4.0 program. The 1H NMR and 13C NMR chemical shifts are calculated using the gauge-independent atomic orbital method (GIAO method) in gas phase and in solvents (water, DMSO and chloroform). The UV spectrum is calculated by using TD-DFT/6-311++G(d,p) method in gas phase and in solvent (water, DMSO and chloroform) using IEF-PCM model. With the help of theoretical calculations chemical activities, electrophilic/nucleophilic nature and sites in the molecule, molecular and chemical properties that cannot be obtained by experimental way are obtained. Accordingly, molecular electrostatic potential (MESP), hardness (η)/softness (S) parameters, net charges analyses are investigated to gain electrophilic and nucleophilic nature. Also the sites in molecule and Fukui function analysis are discussed. The dipole moment (μ), polarizability (αtot), anisotropic polarizability (Δα) and first-order hyperpolarizability (βtot) of the title compound are reported and results shows that the material is capable to generate non-linear effect (NLO). The in silico study of all th e biological and ADMET properties of title molecule are also discussed and compared with reference drug ciprofloxacin antibiotics. The title molecule and reference drug ciprofloxacin docked with biotin carboxylase enzyme (PDB ID: 2V59) of E. coli and aminoglycoside phosphotransferase APH(2")IVA (PDB ID: 4DFU) of Enterococcus casseliflavus receptor with the help of Molegro molecular viewer 2.5 program and binding affinity (ΔG) were determined by ParDock server.


2018 ◽  
Vol 66 (2) ◽  
pp. 139-143
Author(s):  
Md Saiful Islam ◽  
Nusrat Mousume ◽  
M Mufazzal Hossain ◽  
Mohammed A Aziz ◽  
M Saiful Islam

The non-linear optical properties of two Schiff bases, N-(3,5-dichlorobenzylidene)aniline (A) and N-(3,5- dichlorobenzylidene)4-nitroaniline (B) have been studied by ab initio Hartree-Fock method using 6-311G (d,p) basis set. In this study, we report the dipole moment (μ), polarizability ( ) and hyperpolarizability (ß) of both compounds. The hyperpolarizability (ß) value of B is much greater than that of the compound A as it is expected because of the strong intramolecular charge-transfer interaction. The geometrical parameters of the optimized structure of both A and B are reported here and compared with the available experimental data of the relevant compounds. We also calculated the λmax values of compounds A and B. The UV-visible spectra show that both compounds are transparent in the visible region (> 400 nm), implying non-zero microscopic hyperpolarizability. All calculations have been performed using GAUSSIAN09 programme. Dhaka Univ. J. Sci. 66(2): 139-143, 2018 (July)


2019 ◽  
Vol 43 (11-12) ◽  
pp. 531-541 ◽  
Author(s):  
Goncagül Serdaroğlu ◽  
Nesimi Uludağ

(+)-Demethoxyaspidospermine was synthesized via the acylation of aspidospermidine with acetic anhydride, and the structure was determined by elemental analysis and Fourier-transform infrared and nuclear magnetic resonance spectroscopic tools and was supported by the simulated spectroscopic studies. Next, the stable geometries obtained by the conformational analysis performed at the B3LYP/6-31G(d, p) level were used for further investigations carried out in B3LYP and M06-2X functionals, and Hartree–Fock (HF) method, employed by the 6-311++G(d, p) basis set. Also, the natural bond orbital analysis revealed that the most contribution to the lowering of the stabilization energy came from n → π* and π → π* interactions. Moreover, the non-linear optic analysis has shown that the title compound can be a useful agent in the optoelectronic devices because of the optical properties. Also, the chemical reactivity tendency for nucleophilic or electrophilic attack reactions on the compound was evaluated by frontier molecular orbital analysis, and the reactive sites of the compound was shown by highest molecular orbital and lowest unoccupied orbital amplitudes and molecular electrostatic potential diagrams.


Molecules ◽  
2022 ◽  
Vol 27 (2) ◽  
pp. 360
Author(s):  
Iram Kanwal ◽  
Nasir Rasool ◽  
Syeda Huda Mehdi Zaidi ◽  
Zainul Amiruddin Zakaria ◽  
Muhammad Bilal ◽  
...  

In the present study, pyrazole-thiophene-based amide derivatives were synthesized by different methodologies. Here, 5-Bromothiophene carboxylic acid (2) was reacted with substituted, unsubstituted, and protected pyrazole to synthesize the amide. It was observed that unsubstituted amide (5-bromo-N-(5-methyl-1H-pyrazol-3-yl)thiophene-2-carboxamide (7) was obtained at a good yield of about 68 percent. The unsubstituted amide (7) was arylated through Pd (0)-catalyzed Suzuki–Miyaura cross-coupling, in the presence of tripotassium phosphate (K3PO4) as a base, and with 1,4-dioxane as a solvent. Moderate to good yields (66–81%) of newly synthesized derivatives were obtained. The geometry of the synthesized compounds (9a–9h) and other physical properties, like non-linear optical (NLO) properties, nuclear magnetic resonance (NMR), and other chemical reactivity descriptors, including the chemical hardness, electronic chemical potential, ionization potential, electron affinity, and electrophilicity index have also been calculated for the synthesized compounds. In this study, DFT calculations have been used to investigate the electronic structure of the synthesized compounds and to compute their NMR data. It was also observed that the computed NMR data manifested significant agreement with the experimental NMR results. Furthermore, compound (9f) exhibits a better non-linear optical response compared to all other compounds in the series. Based on frontier molecular orbital (FMO) analysis and the reactivity descriptors, compounds (9c) and (9h) were predicted to be the most chemically reactive, while (9d) was estimated to be the most stable among the examined series of compounds.


2015 ◽  
Vol 8 (2) ◽  
pp. 2122-2134
Author(s):  
Sarvendra Kumar ◽  
Rajesh Kumar ◽  
Jayant Teotia ◽  
M. K. Yadav

In the present work, UV- Visible spectra of 2-Chloro-3,4-Dimethoxybenzaldehyde (2,3,4-CDMB) compound  have been carried out experimentally and theoretically. The ultraviolet absorption spectrum of title compound in three solvents (Acetone, Diethyl Ether, CCl4) of different polarity were examined in the range of 200–500 nm. The structure of the molecule was optimized and the structural characteristics were determined by HF and DFT (B3LYP) methods with 6-31+G(d,p) and 6-311++G(d,p) as basis sets. The excitation energy, wavelength corresponds to absorption maxima () and oscillator strength (f) are calculated by Time-Dependent Density Functional Theory (TD-DFT) using B3LYP/6-31+G(d,p) and B3LYP/6-311++G(d,p) as basis sets. The electric dipole moment (μ), polarizability (α) and the first hyperpolarizability (β ) have been computed to evaluate the non-linear optical (NLO) response of the investigated compound by HF and DFT (B3LYP) with already mentioned basis sets. Thermodynamic functions of the title compound at different temperatures were also calculated.


Sign in / Sign up

Export Citation Format

Share Document