scholarly journals A Theoretical Study of Hydrogen-Bonded Complexes of Ethylene Glycol, Thioglycol and Dithioglycol with Water

2021 ◽  
Vol 34 (1) ◽  
pp. 169-182
Author(s):  
Ruchi Kohli ◽  
Rupinder Preet Kaur

In the present study, a theoretical analysis of hydrogen bond formation of ethylene glycol, thioglycol, dithioglycol with single water molecule has been performed based on structural parameters of optimized geometries, interaction energies, deformation energies, orbital analysis and charge transfer. ab initio molecular orbital theory (MP2) method in conjunction with 6-31+G* basis set has been employed. Twelve aggregates of the selected molecules with water have been optimized at MP2/6-31+G* level and analyzed for intramolecular and intermolecular hydrogen bond interactions. The evaluated interaction energies suggest aggregates have hydrogen bonds of weak to moderate strength. Although the aggregates are primarily stabilized by conventional hydrogen bond donors and acceptors, yet C-H···O, S-H···O, O-H···S, etc. untraditional hydrogen bonds also contribute to stabilize many aggregates. The hydrogen bonding involving sulfur in the aggregates of thioglycol and dithioglycol is disfavoured electrostatically but favoured by charge transfer. Natural bond orbital (NBO) analysis has been employed to understand the role of electron delocalizations, bond polarizations, charge transfer, etc. as contributors to stabilization energy.

2008 ◽  
Vol 07 (06) ◽  
pp. 1171-1186 ◽  
Author(s):  
SALMA PARVEEN ◽  
SUBOJIT DAS ◽  
ASIT K. CHANDRA ◽  
THERESE ZEEGERS-HUYSKENS

Hydrogen bonding interactions between trimethylamine (TMA) and a series of para substituted phenols (X– C 6 H 4 OH , X = H , CH 3, NH 2, Cl , CN , and NO 2) are studied by using density functional theory with the hybrid B3LYP functional and the 6-31++G(d,p) basis set. Both electron donor and acceptor substituents (X) are chosen to study systematically the relation between the proton donor ability of the phenols and the strength of the OH … N hydrogen bond. The effect of hydrogen bonding on spectral and structural parameters and their inter relation are discussed. The natural bond orbital (NBO) analysis (occupation of σ* orbitals, hyperconjugative energies and atomic charges) is also carried out to elucidate the reason behind the spectral and structural changes due to hydrogen bond formation. Several correlations between hydrogen bond strength and bond properties are discussed.


2020 ◽  
Vol 65 (4) ◽  
pp. 298
Author(s):  
H. Hushvaktov ◽  
A. Jumabaev ◽  
G. Murodov ◽  
A. Absanov ◽  
G. Sharifov

Intra- and intermolecular interactions in liquid ethylene glycol have been studied using the Raman spectroscopy method and non-empirical calculations. The results of non-empirical calculations show that an intermolecular hydrogen bond is formed between the hydrogen atom of the OH group in one ethylene glycol molecule and the oxygen atom in the other molecule. The formation of this bond gives rise to a substantial redistribution of charges between those atoms, which, nevertheless, insignificantly changes the bond length. In the corresponding Raman spectra, the presence of hydrogen bonds between the ethylene glycol molecules manifests itself as the band asymmetry and splitting.


2001 ◽  
Vol 215 (7) ◽  
Author(s):  
J. Gangopadhyay ◽  
Sujit Chandra Lahiri

Cyproheptadine, an antihistaminic and antipruritic drug, forms fairly stable charge-transfer complexes with quinone (Q), chloranil (Chl-Q) and anthraquinone (AQ) in chloroform. It also forms stable hydrogen bonds with alcohols (methanol and propanol) and phenols (α-naphthol,The results suggest that cyproheptadine can form loose association with receptors through charge-transfer and hydrogen bond complex formation.


2012 ◽  
Vol 251 ◽  
pp. 346-350
Author(s):  
Kun Yuan ◽  
Ling Ling Lv ◽  
Yuan Cheng Zhu

MP2/aug-cc-pvtz level was used to optimize geometries of the complexes between GeH4 and Y(Y=He, Ne, Ar and Kr). The structures and electronic properties of the blue-shift hydrogen bonds complexes GeH4…Y(Y=Ar, Kr) were investigated. The calculated interaction energies with basis set super-position error (BSSE) correction revealed that the relative stabilities of the complexes in the order: GeH4…He ˂ GeH4…Ne ˂ GeH4…Ar ≈ GeH4…Kr. The calculated results showed that the interactions between GeH4 and Y(Y=He, Ne)belong to van der Waals force, and those between GeH4 and Y(Y=Ar, Kr)belong to weak hydrogen bond. NBO (natural bond orbital theory) and electron behavior analysis showed that GeH4…Y(Y= Ar, Kr) hydrogen bond is with a non-electrostatic property.


2018 ◽  
Vol 18 (1) ◽  
pp. 173 ◽  
Author(s):  
Sitti Rahmawati ◽  
Cynthia Linaya Radiman ◽  
Muhamad Abdulkadir Martoprawiro

This study aims to study the conformation, the hydrogen bond network, and the stabilities of all the possible intermolecular interactions in phosphorylated nata de coco membrane with water (NDCF-(H2O)n, n = 1-5). Analysis of natural bond orbital (NBO) was performed to measure the relative strength of the hydrogen bonding interactions, charge transfer, particularly the interactions of n-σ * O-H and to take into account the effect on the stabilities of the molecular structure. All calculation were performed using density functional theory (DFT) method, at B3LYP functional level of theory and 6-311 G** basis set. The charge transfer between the lone pair of a proton acceptor to the anti-bonding orbital of the proton donor provides the substantial to the stabilization of the hydrogen bonds. Interaction between NDCF and (H2O)5 was strongest with the stabilization energy of 37.73 kcal/mol, that indicate the ease of donating lone pair electrons. The contributions of each hydrogen bond to the stability of the complex have been analyzed.


2021 ◽  
Author(s):  
Huamei Chen ◽  
Guangyuan Feng ◽  
Qiu Liang ◽  
Enbing Zhang ◽  
Yongtao Shen ◽  
...  

Herein, we illustrate how the cooperation of intermolecular hydrogen bonds and conformation flexibility leads to the formation of diverse complex covalent nanostructures on the surface, while the relative abundance of...


2000 ◽  
Vol 56 (5) ◽  
pp. 849-856 ◽  
Author(s):  
Clair Bilton ◽  
Frank H. Allen ◽  
Gregory P. Shields ◽  
Judith A. K. Howard

A systematic survey of the Cambridge Structural Database (CSD) has identified all intramolecular hydrogen-bonded ring motifs comprising less than 20 atoms with N and O donors and acceptors. The probabilities of formation Pm of the 50 most common motifs, which chiefly comprise five- and six-membered rings, have been derived by considering the number of intramolecular motifs which could possibly form. The most probable motifs (Pm > 85%) are planar conjugated six-membered rings with a propensity for resonance-assisted hydrogen bonding and these form the shortest contacts, whilst saturated six-membered rings typically have Pm < 10%. The influence of intramolecular-motif formation on intermolecular hydrogen-bond formation has been assessed for a planar conjugated model substructure, showing that a donor-H is considerably less likely to form an intermolecular bond if it forms an intramolecular one. On the other hand, the involvement of a carbonyl acceptor in an intramolecular bond does not significantly affect its ability to act as an intermolecular acceptor and thus carbonyl acceptors display a substantially higher inclination for bifurcation if one hydrogen bond is intramolecular.


Author(s):  
Maciej Bujak

The ability to intentionally construct, through different types of interactions, inorganic–organic hybrid materials with desired properties is the main goal of inorganic crystal engineering. The primary deformation, related to intrinsic interactions within inorganic substructure, and the secondary deformation, mainly caused by the hydrogen bond interactions, are both responsible for polyhedral distortions of halogenidoantimonates(III) with organic cations. The evolution of structural parameters, in particular the Sb—I secondary- and O/N/C—H...I hydrogen bonds, as a function of temperature assists in understanding the contribution of those two distortion factors to the irregularity of [SbI6]3−polyhedra. In tris(piperazine-1,4-diium) bis[hexaiodidoantimonate(III)] pentahydrate, (C4H12N2)3[SbI6]2·5H2O (TPBHP), where the isolated [SbI6]3–units were found, distortion is governed only by O/N/C—H...I hydrogen bonds, whereas in piperazine-1,4-diium bis[tetraiodidoantimonate(III)] tetrahydrate, (C4H12N2)[SbI4]2·4H2O (PBTT), both primary and O—H...I secondary factors cause the deformation of one-dimensional [{SbI4}n]n−chains. The larger in spatial dimensions piperazine-1,4-diium cations, in contrast to the smaller water of crystallization molecules, do not significantly contribute to the octahedral distortion, especially in PBTT. The formation of isolated [SbI6]3−ions in TPBHP is the result of specific second coordination sphere hydrogen bond interactions that stabilize the hybrid structure and simultaneously effectively separate and prevent [SbI6]3−units from mutual interactions. The temperature-induced changes, further supported by the analysis of data retrieved from the Cambridge Structural Database, illustrate the significance of both primary and secondary distortion factors on the deformation of octahedra. Also, a comparison of packing features in the studied hybrids with those in the non-metal containing piperazine-1,4-diium diiodide diiodine (C4H12N2)I2·I2(PDD) confirms the importance and hierarchy of different types of interactions.


2007 ◽  
Vol 63 (3) ◽  
pp. o1289-o1290 ◽  
Author(s):  
Jin-Zhou Li ◽  
Heng-Qiang Zhang ◽  
Hong-Xin Li ◽  
Pi-Zhi Che ◽  
Tian-Chi Wang

The crystal structure of the title compound, C18H11ClN2O4, contains intra- and intermolecular hydrogen bonds that link the ketone and hydroxyl groups. The intermolecular hydrogen bond results in the formation of a dimer with an R 2 2(12) graph-set motif.


Sign in / Sign up

Export Citation Format

Share Document