scholarly journals Aggregation of Molecules in Liquid Ethylene Glycol and Its Manifestation in Experimental Raman Spectra and Non-Empirical Calculations

2020 ◽  
Vol 65 (4) ◽  
pp. 298
Author(s):  
H. Hushvaktov ◽  
A. Jumabaev ◽  
G. Murodov ◽  
A. Absanov ◽  
G. Sharifov

Intra- and intermolecular interactions in liquid ethylene glycol have been studied using the Raman spectroscopy method and non-empirical calculations. The results of non-empirical calculations show that an intermolecular hydrogen bond is formed between the hydrogen atom of the OH group in one ethylene glycol molecule and the oxygen atom in the other molecule. The formation of this bond gives rise to a substantial redistribution of charges between those atoms, which, nevertheless, insignificantly changes the bond length. In the corresponding Raman spectra, the presence of hydrogen bonds between the ethylene glycol molecules manifests itself as the band asymmetry and splitting.

2021 ◽  
Vol 34 (1) ◽  
pp. 169-182
Author(s):  
Ruchi Kohli ◽  
Rupinder Preet Kaur

In the present study, a theoretical analysis of hydrogen bond formation of ethylene glycol, thioglycol, dithioglycol with single water molecule has been performed based on structural parameters of optimized geometries, interaction energies, deformation energies, orbital analysis and charge transfer. ab initio molecular orbital theory (MP2) method in conjunction with 6-31+G* basis set has been employed. Twelve aggregates of the selected molecules with water have been optimized at MP2/6-31+G* level and analyzed for intramolecular and intermolecular hydrogen bond interactions. The evaluated interaction energies suggest aggregates have hydrogen bonds of weak to moderate strength. Although the aggregates are primarily stabilized by conventional hydrogen bond donors and acceptors, yet C-H···O, S-H···O, O-H···S, etc. untraditional hydrogen bonds also contribute to stabilize many aggregates. The hydrogen bonding involving sulfur in the aggregates of thioglycol and dithioglycol is disfavoured electrostatically but favoured by charge transfer. Natural bond orbital (NBO) analysis has been employed to understand the role of electron delocalizations, bond polarizations, charge transfer, etc. as contributors to stabilization energy.


2021 ◽  
Author(s):  
Huamei Chen ◽  
Guangyuan Feng ◽  
Qiu Liang ◽  
Enbing Zhang ◽  
Yongtao Shen ◽  
...  

Herein, we illustrate how the cooperation of intermolecular hydrogen bonds and conformation flexibility leads to the formation of diverse complex covalent nanostructures on the surface, while the relative abundance of...


2009 ◽  
Vol 15 (2) ◽  
pp. 239-248 ◽  
Author(s):  
Solveig Gaarn Olesen ◽  
Steen Hammerum

It is generally expected that the hydrogen bond strength in a D–H•••A adduct is predicted by the difference between the proton affinities (Δ PA) of D and A, measured by the adduct stabilization, and demonstrated by the infrared (IR) redshift of the D–H bond stretching vibrational frequency. These criteria do not always yield consistent predictions, as illustrated by the hydrogen bonds formed by the E and Z OH groups of protonated carboxylic acids. The Δ PA and the stabilization of a series of hydrogen bonded adducts indicate that the E OH group forms the stronger hydrogen bonds, whereas the bond length changes and the redshift favor the Z OH group, matching the results of NBO and AIM calculations. This reflects that the thermochemistry of adduct formation is not a good measure of the hydrogen bond strength in charged adducts, and that the ionic interactions in the E and Z adducts of protonated carboxylic acids are different. The OH bond length and IR redshift afford the better measure of hydrogen bond strength.


2007 ◽  
Vol 63 (3) ◽  
pp. o1282-o1284 ◽  
Author(s):  
Bruno Ndjakou Lenta ◽  
Diderot Tchamo Noungoue ◽  
Krishna Prasad Devkota ◽  
Patrice Aime Fokou ◽  
Silvere Ngouela ◽  
...  

The title compound, C38H50O6, also known as guttiferone A, was isolated from the medicinal plant Symphonia globulifera. It is a benzophenone derivative where one aryl group is derivatized to give a bicyclic system which has two prenyl groups attached to the bridgehead. One of the cyclohexane rings in the bicyclic system is in a chair form, while the other has a distorted half-chair conformation. In addition to an intramolecular O—H...O hydrogen bond, intermolecular O—H...O hydrogen bonds link molecules into one-dimensional chains.


1970 ◽  
Vol 24 (1) ◽  
pp. 42-43 ◽  
Author(s):  
Stanley K. Freeman

Raman spectra of 4-methyl isochroman and its aromatic ring substituted derivatives indicate the presence of two conformers in the liquid state and only one in the solid, while the 1- and 3-methyl analog assume one conformation only in both states. The presence of a methyl group adjacent to the ring oxygen atom sterically prevents adoption of one of the two possible conformations due to 1,3-interaction. No such restriction is imposed on the 4-methyl compounds.


2000 ◽  
Vol 56 (5) ◽  
pp. 849-856 ◽  
Author(s):  
Clair Bilton ◽  
Frank H. Allen ◽  
Gregory P. Shields ◽  
Judith A. K. Howard

A systematic survey of the Cambridge Structural Database (CSD) has identified all intramolecular hydrogen-bonded ring motifs comprising less than 20 atoms with N and O donors and acceptors. The probabilities of formation Pm of the 50 most common motifs, which chiefly comprise five- and six-membered rings, have been derived by considering the number of intramolecular motifs which could possibly form. The most probable motifs (Pm > 85%) are planar conjugated six-membered rings with a propensity for resonance-assisted hydrogen bonding and these form the shortest contacts, whilst saturated six-membered rings typically have Pm < 10%. The influence of intramolecular-motif formation on intermolecular hydrogen-bond formation has been assessed for a planar conjugated model substructure, showing that a donor-H is considerably less likely to form an intermolecular bond if it forms an intramolecular one. On the other hand, the involvement of a carbonyl acceptor in an intramolecular bond does not significantly affect its ability to act as an intermolecular acceptor and thus carbonyl acceptors display a substantially higher inclination for bifurcation if one hydrogen bond is intramolecular.


The first study of an aromatic molecule by neutron diffraction, leading to a Fourier projection of the neutron scattering density in the unit cell, gives a value of 1·08 ± 0·04 Å for the length of the C—H bonds which link hydrogen atoms to the benzene ring. The spirals of hydrogen bonds which bind together neighbouring molecules are found to consist of typical ‘long bonds’, with the proton much closer to one oxygen atom than to the other. The O—H distance is 1·02 Å, and it appears that the O, H, O atoms are not collinear.


2007 ◽  
Vol 63 (3) ◽  
pp. o1289-o1290 ◽  
Author(s):  
Jin-Zhou Li ◽  
Heng-Qiang Zhang ◽  
Hong-Xin Li ◽  
Pi-Zhi Che ◽  
Tian-Chi Wang

The crystal structure of the title compound, C18H11ClN2O4, contains intra- and intermolecular hydrogen bonds that link the ketone and hydroxyl groups. The intermolecular hydrogen bond results in the formation of a dimer with an R 2 2(12) graph-set motif.


2014 ◽  
Vol 541-542 ◽  
pp. 343-348
Author(s):  
Xiu Jie Jia ◽  
Jian Feng Li ◽  
Fang Yi Li

Biomass cushioning packaging material has been gaining attention in the properties of the materials because of biodegradable and green environmental protection, and the starch plastics play an important role. Urea, formamide, glycerol, ethylene glycol four material compounded with starch respectively, for the purpose to forming hydrogen bonds by the test in this paper, the ability to hydrogen bond with the starch has been observed by infrared spectrum analysis. The results showed that urea, formamide as strong electronegative group stronger binding, glycerol and ethylene glycol are more preferably to form hydrogen bonds with the starch because of more hydroxyl group content.


2014 ◽  
Vol 1030-1032 ◽  
pp. 121-124
Author(s):  
Song Li ◽  
Lei Fang

Molecular conformation and binding modeling were built by Hyperchem 8.0 computational chemistry package and the optimum molecular conformation was obtained by molecular mechanics optimizer. It was found that there were two types of binding sites for norfloxacin on the molecular imprinted particles (MIPs).One was the hydrogen bonds between oxygen atom of MIPs with the carbonyl group of norfloxacin and the other one was the hydrogen bonds between oxygen atom of MIPs with the hydroxyl group of norfloxacin. Moreover, the energies change of the molecules were1.69 x106 J/mol,1.80x106 J/mol and 5.37x106 J/mol and 2.54 x106 J/mol during the binding process of the norfloxacin (NOR), ciprofloxacin (CIP), bisphenol A (BPA) and tonalide (TON) onto the MIPs, respectively. The result indicated that the MIPs had a good selectivity for NOR and CIP than BPA and TON.


Sign in / Sign up

Export Citation Format

Share Document