scholarly journals Density Functional Theory (DFT) and Natural Bond Orbital (NBO) Analysis of Intermolecular Hydrogen Bond Interaction in "Phosphorylated Nata De Coco - Water"

2018 ◽  
Vol 18 (1) ◽  
pp. 173 ◽  
Author(s):  
Sitti Rahmawati ◽  
Cynthia Linaya Radiman ◽  
Muhamad Abdulkadir Martoprawiro

This study aims to study the conformation, the hydrogen bond network, and the stabilities of all the possible intermolecular interactions in phosphorylated nata de coco membrane with water (NDCF-(H2O)n, n = 1-5). Analysis of natural bond orbital (NBO) was performed to measure the relative strength of the hydrogen bonding interactions, charge transfer, particularly the interactions of n-σ * O-H and to take into account the effect on the stabilities of the molecular structure. All calculation were performed using density functional theory (DFT) method, at B3LYP functional level of theory and 6-311 G** basis set. The charge transfer between the lone pair of a proton acceptor to the anti-bonding orbital of the proton donor provides the substantial to the stabilization of the hydrogen bonds. Interaction between NDCF and (H2O)5 was strongest with the stabilization energy of 37.73 kcal/mol, that indicate the ease of donating lone pair electrons. The contributions of each hydrogen bond to the stability of the complex have been analyzed.

2020 ◽  
Vol 18 (1) ◽  
pp. 357-368
Author(s):  
Kaiwen Zheng ◽  
Kai Guo ◽  
Jing Xu ◽  
Wei Liu ◽  
Junlang Chen ◽  
...  

AbstractCatechin – a natural polyphenol substance – has excellent antioxidant properties for the treatment of diseases, especially for cholesterol lowering. Catechin can reduce cholesterol content in micelles by forming insoluble precipitation with cholesterol, thereby reducing the absorption of cholesterol in the intestine. In this study, to better understand the molecular mechanism of catechin and cholesterol, we studied the interaction between typical catechins and cholesterol by the density functional theory. Results show that the adsorption energies between the four catechins and cholesterol are obviously stronger than that of cholesterol themselves, indicating that catechin has an advantage in reducing cholesterol micelle formation. Moreover, it is found that the molecular interactions of the complexes are mainly due to charge transfer of the aromatic rings of the catechins as well as the hydrogen bond interactions. Unlike the intuitive understanding of a complex formed by hydrogen bond interaction, which is positively correlated with the number of hydrogen bonds, the most stable complexes (epicatechin–cholesterol or epigallocatechin–cholesterol) have only one but stronger hydrogen bond, due to charge transfer of the aromatic rings of catechins.


1998 ◽  
Vol 63 (8) ◽  
pp. 1223-1244 ◽  
Author(s):  
Cordula Rauwolf ◽  
Achim Mehlhorn ◽  
Jürgen Fabian

Weak interactions between organic donor and acceptor molecules resulting in cofacially-stacked aggregates ("CT complexes") were studied by second-order many-body perturbation theory (MP2) and by gradient-corrected hybrid Hartree-Fock/density functional theory (B3LYP exchange-correlation functional). The complexes consist of tetrathiafulvalene (TTF) and related compounds and tetracyanoethylene (TCNE). Density functional theory (DFT) and MP2 molecular equilibrium geometries of the component structures are calculated by means of 6-31G*, 6-31G*(0.25), 6-31++G**, 6-31++G(3df,2p) and 6-311G** basis sets. Reliable molecular geometries are obtained for the donor and acceptor compounds considered. The geometries of the compounds were kept frozen in optimizing aggregate structures with respect to the intermolecular distance. The basis set superposition error (BSSE) was considered (counterpoise correction). According to the DFT and MP2 calculations laterally-displaced stacks are more stable than vertical stacks. The charge transfer from the donor to the acceptor is small in the ground state of the isolated complexes. The cp-corrected binding energies of TTF/TCNE amount to -1.7 and -6.3 kcal/mol at the DFT(B3LYP) and MP2(frozen) level of theory, respectively (6-31G* basis set). Larger binding energies were obtained by Hobza's 6-31G*(0.25) basis set. The larger MP2 binding energies suggest that the dispersion energy is underestimated or not considered by the B3LYP functional. The energy increases when S in TTF/TCNE is replaced by O or NH but decreases with substitution by Se. The charge-transferred complexes in the triplet state are favored in the vertical arrangement. Self-consistent-reaction-field (SCRF) calculations predicted a gain in binding energy with solvation for the ground-state complex. The ground-state charge transfer between the components is increased up to 0.8 e in polar solvents.


2018 ◽  
Vol 74 (7) ◽  
pp. 847-855 ◽  
Author(s):  
Elham Torabi Farkhani ◽  
Mehrdad Pourayoubi ◽  
Mohammad Izadyar ◽  
Pavel V. Andreev ◽  
Ekaterina S. Shchegravina

In the crystal structure ofO,O′-diethylN-(2,4,6-trimethylphenyl)thiophosphate, C13H22NO2PS, two symmetrically independent thiophosphoramide molecules are linked through N—H...S and N—H...π hydrogen bonds to form a noncentrosymmetric dimer, withZ′ = 2. The strengths of the hydrogen bonds were evaluated using density functional theory (DFT) at the M06-2X level within the 6-311++G(d,p) basis set, and by considering the quantum theory of atoms in molecules (QTAIM). It was found that the N—H...S hydrogen bond is slightly stronger than the N—H...π hydrogen bond. This is reflected in differences between the calculated N—H stretching frequencies of the isolated molecules and the frequencies of the same N—H units involved in the different hydrogen bonds of the hydrogen-bonded dimer. For these hydrogen bonds, the corresponding charge transfers,i.e.lp (or π)→σ*, were studied, according to the second-order perturbation theory in natural bond orbital (NBO) methodology. Hirshfeld surface analysis was applied for a detailed investigation of all the contacts participating in the crystal packing.


2020 ◽  
Vol 33 (1) ◽  
pp. 171-178
Author(s):  
N.F.M. Azmi ◽  
R. Ali ◽  
A.A. Azmi ◽  
M.Z.H. Rozaini ◽  
K.H.K. Bulat ◽  
...  

The binding, interaction and distortion energies between the main triglycerides, palmitic-oleic-stearic (POS) in cocoa butter versus palmitic-oleic-palmitic (POP) in refined, bleached and deodorized (RBD) palm oil with cocoa′s methylxanthines (caffeine, theobromine, and theophylline) during the production of chocolate were theoretically studied and reported. The quantum mechanical software package of Gaussian09 at the theoretical level of density functional theory B3LYP/6-31G(d,p) was employed for all calculations, optimization, and basis set superposition errors (BSSE). Geometry optimizations were carried out to the minimum potential energy of individual species and binary complexes formed between the triglycerides, methylxanthines and polyphenols. The interaction energies for the optimized complexes were then corrected for the BSSE using the counterpoise method of Boys and Bernardi. The results revealed that the binding energy and interaction energy between methylxanthine components in cocoa powder with triglycerides were almost of the same magnitude (13.6-14.5 and 3.4-3.7 kJ/mol, respectively), except for the binary complex of POS-caffeine (25.1 and 10.7 kJ/mol, respectively). Based on the molecular geometry results, the hydrogen bond length and angle correlated well with the interaction energies. Meanwhile, the POS-caffeine complex with two higher and almost linear bond angles showed higher binding and interaction energies as compared to the other methylxanthines. Therefore, a donor-acceptor analysis showed that the hydrogen bond strength was proven using the molecular electrostatic potential (MEP), which resulted in parallel outcomes. The research results were believed to be one of the factors that contributed to the rheological behaviour and sensory perception of cocoa products, especially chocolate.


2011 ◽  
Vol 110-116 ◽  
pp. 315-320
Author(s):  
M. R. Sonawane ◽  
B. J. Nagare

We report reactivity of silicon doped single walled carbon nanotube (Si-CNT) towards the small atmospheric gas molecules O2, CO2, SO2and NO2using density functional theory based on the numerical basis set method. The reactivity of these molecules is explained on the basis of electronic properties such as binding energy, charge density, charge transfer and density of states. The large change in binding energy and formation of sigma (σ) bonds between silicon and oxygen atoms shows the strong chemisorption of the molecules on Si-CNT. Further, the density of states analysis clearly illustrate the reduction in the band gap and creation of extra state near the Fermi level, which acts as a catalytic center for adsorption of the molecules. The Mulliken population analysis indicates the charge transfer from Si-CNT to the molecules due to their more electronegativity.


2012 ◽  
Vol 2012 ◽  
pp. 1-12 ◽  
Author(s):  
Snehanshu Pal ◽  
T. K. Kundu

A detailed quantum chemical calculation based study of hydrogen bond formation in trimethylene glycol- (TMG-) water complex has been performed by Hatree-Fock (HF) method, second-order Møller-Plesset perturbation theory (MP2), density functional theory (DFT), and density functional theory with dispersion function (DFT-D) using 6-31++G(d,p) basis set. B3LYP DFT-D, WB97XD, M06, and M06-2X functionals are used to capture highly dispersive hydrogen bond formation. Geometrical parameters, interaction energy, deviation of potential energy curve of hydrogen-bonded O–H from that of free O–H, natural bond orbital (NBO), atom in molecule (AIM), charge transfer, and red shift are investigated. It is observed that hydrogen bond between TMG and water molecule is stronger in case of TMG acting as proton donor compared to that of water acting as proton donor, and dilute TMG solution would inhibit water cluster formation.


2016 ◽  
Vol 94 (6) ◽  
pp. 583-593 ◽  
Author(s):  
Feride Akman

In the present work, two-armed macroinitiator containing coumarin were synthesized, characterized by Fourier transform infrared spectroscopy and 1H nuclear magnetic resonance techniques and investigated theoretically using density functional theory (DFT) calculations. The molecular geometry, fundamental vibrational frequencies, atomic charges obtained from atomic polar tensors and Mulliken were analyzed by means of structure optimizations based on the DFT method with 6-31G+(d, p) as a basis set. The 1H chemical shifts were calculated by the gauge-including atomic orbital method and compared with available experimental data. The electronic properties, such as highest occupied molecular orbital – lowest unoccupied molecular orbital (HOMO–LUMO) energies, electron affinity, electronegativity, ionization energy, hardness, chemical potential, global softness, and global electrophilicity were calculated by using the DFT method. The electrostatic potential and molecular electrostatic potential surfaces were performed to predict the reactive sites of the two-armed macroinitiator. The energy difference between acceptor and donor and stabilization energy were determined using natural bond orbital analysis. The results show that the occurrence of intramolecular charge transfers within the polymer. Time-dependent density functional theory calculations of visible spectra were analyzed at different solvents. Finally, thermodynamic functions, such as enthalpy, heat capacity, and entropy, of the two-armed macroinitiator at different temperatures were calculated and the relationship with temperature was investigated.


BIBECHANA ◽  
2017 ◽  
Vol 15 ◽  
pp. 131-139
Author(s):  
Bhawani Datt Joshi ◽  
Manoj Kumar Chaudhary

In this paper, natural bond orbital (NBO) analysis, nonlinear optical and the thermodynamic properties of 10-Acetyl-10H-phenothiazine 5-oxide have been analyzed by employing density functional theory level employing 6-311++G(d,p) basis set. NBO analysis reveals that the intra- intermolecular charge transfer occurs within the molecule leading to the stabilization. The predicted nonlinear optical properties (NLO) like; polarizability and first hyperpolarizabiliy support that the molecule could attract the interests for future investigation.BIBECHANA 15 (2018) 131-139


2018 ◽  
Vol 22 (2) ◽  
pp. 148-155
Author(s):  
Nabaraj Pokhrel ◽  
Hari Prasad Lamichhane

Nature of delocalization of the electrons from the ligands to metals in the first coordination sphere of the high-spin complexes [Fe(H2O)6]2+/3+ and [Zn(H2O)6]2+ are computationally studied using density functional theory. Among the studied complexes, natural charge transfer from H2O ligands to metal ion is found to be maximum of 1.556e in [Fe(H2O)6]3+ and minimum of 0.621e in [Zn(H\2O)6]2+. On the other hand, the interaction between the lone pairs of oxygen with metal ion was found to be stronger in [Zn(H2O)6]2+ than in the complexes with second coordination sphere. Number of such strong interactions in the first coordination sphere was found to be decreased with the addition of H2O ligands in the second coordination sphere.Journal of Institute of Science and Technology Volume 22, Issue 2, January 2018, Page: 148-155


Sign in / Sign up

Export Citation Format

Share Document