Efficient Green Synthesis, Molecular Modeling and Antimicrobial Investigations of Novel Chloroflavone Libraries

2021 ◽  
Vol 6 (3) ◽  
pp. 161-166
Author(s):  
Santosh S. Chobe ◽  
Nilesh J. Mali ◽  
Charushila K. Nerkar ◽  
Savita S. Chobe ◽  
Arvind M. Patil ◽  
...  

In this article, a sequence of novel substituted 3-chloroflavones derivatives has been synthesized by using the inexperienced efficiency of solvent polyethylene glycol-400. This novelty of prepared derivatives was examined for their antifungal and their in silco docking study. Polyethylene glycol-400 is known as a green solvent to get to the bottom of the ecosystem’s toxic solvent load. A collection of novel substituted 3-chloroflavones derivatives has been synthesized by using the inexperienced functionality of polyethylene glycol-400 solvent. These newly prepared formulations had been evaluated for their antifungal and their in silico docking study. The structures of all the synthesized compounds were characterized with FT-IR, 1H NMR and HRMS techniques.

Author(s):  
Devidas G. Anuse ◽  
Suraj N. Mali ◽  
Bapu R. Thorat ◽  
Ramesh S. Yamgar ◽  
Hemchandra K. Chaudhari

Background: Antimicrobial resistance is major global health problem, which is being rapidly deteriorating the quality of human health. Series of substituted N-(benzo[d]thiazol-2-yl)-2-(4-(6-fluorobenzo[d]isoxazol-3-yl)piperidin-1-yl)acetamide (3a-j) were synthesized from substituted N-(benzo[d]thiazol-2-yl)-2-chloroacetamide/bromopropanamide (2a-j) and 6-fluoro-3-(piperidin-4-yl)benzo[d]isoxazole (2) and further evaluated for their docking properties and antimicrobial activity. Methods: All synthesized compounds were characterized by FT-IR, NMR and Mass spectral analysis. All compounds were allowed to dock against different antimicrobial targets having PDB ID: 1D7U and against common antifungal target having PDB ID: 1EA1. Results: The compounds 3d and 3h were showed good activity against Methicillin-resistant Staphylococcus aureus (MRSA, resistance Gram-positive bacteria). All synthesized compounds showed good to moderate activity against selected bacterial and fungal microbial strains. If we compared the actual in-vitro antimicrobial activity and in-silico molecular docking study, we found that molecules 3i and 3h were more potent than the others. Conclusion: Our current study would definitely pave the new way towards designing and synthesis of more potent 2-aminobenzothiazoles derivatives.


2019 ◽  
Vol 15 (4) ◽  
pp. 318-333
Author(s):  
Dipak P. Mali ◽  
Neela M. Bhatia

Objective:To screen the phytochemicals for phosphodiesterase 5A (PDE5A) inhibitory potential and identify lead scaffolds of antihypertensive phytochemicals using in silico docking studies.Methods:In this perspective, reported 269 antihypertensive phytochemicals were selected. Sildenafil, a PDE5A inhibitor was used as the standard. In silico docking study was carried out to screen and identify the inhibiting potential of the selected phytochemicals against PDE5A enzyme using vLife MDS 4.4 software.Results:Based on docking score, π-stacking, H-bond and ionic interactions, 237 out of 269 molecules were selected which have shown one or more interactions. Protein residue Gln817A was involved in H-boding whereas Val782A, Phe820A and Leu804A were involved in π-stacking interaction with ligand. The selected 237 phytochemicals were structurally diverse, therefore 82 out of 237 molecules with one or more tricycles were filtered out for further analysis. Amongst tricyclic molecules, 14 molecules containing nitrogen heteroatom were selected for lead scaffold identification which finally resulted in three different basic chemical backbones like pyridoindole, tetrahydro-pyridonaphthyridine and dihydro-pyridoquinazoline as lead scaffolds.Conclusion:In silico docking studies revealed that nitrogen-containing tetrahydro-pyridonaphthyridine and dihydro-pyridoquinazoline tricyclic lead scaffolds have emerged as novel PDE5A inhibitors for antihypertensive activity. The identified lead scaffolds may provide antihypertensive lead molecules after its optimization.


2013 ◽  
Vol 27 (2) ◽  
pp. 641-650 ◽  
Author(s):  
Farhad Ahmadi ◽  
Batool Jafari ◽  
Mehdi Rahimi-Nasrabadi ◽  
Sahar Ghasemi ◽  
Kumars Ghanbari

Author(s):  
RACHAEL EVANGELINE ◽  
NIHAL AHMED

Objective: The aim of this study is to investigate the potential of Persea americana extracts for their Anti-Parkinson application through an in-silico docking study. Methods: PubChem and protein data bank databases were used to retrieve 3D structures. AutoDock4 was used to perform protein-ligand docking analysis. PyMOL was used to visualize the docking results. Results: Among the 30 ligand, the highest affinity was demonstrated by Hesperidin with a free binding energy of −6.8 kcal/mol and formation of five hydrogen bonds. The second highest significance was demonstrated by Biphenyl 4-(4-diethylaminobenzylidenamino) with a free binding energy of −5.9 kcal/mol with the formation of 2 hydrogen bonds. Among the three sets of phytochemicals from different solvent extracts, water extract demonstrated the highest potential as Anti-Parkinson active. Conclusion: P. americana extracts were analyzed for their Anti-Parkinson potential, and among the three extracts, the aqueous extract was predicted to have significant Anti-Parkinson potential, based on in silico docking analysis, due to the presence of active phytochemicals such as Hesperidin and others.


Biomedicine ◽  
2021 ◽  
Vol 41 (2) ◽  
pp. 349-357
Author(s):  
E. Padmini ◽  
M. Kavitha

Introduction and Aim: Phyllanthus acidus L.Skeels (Family: Phyllanthaceae) or Star Gooseberry which bears small, edible, juicy, sour, yellow berries fruit is known as a “liver tonic” in ayurvedic medicine. However, the behavior of the plant fruit or its constituents in cell apoptosis/cell survival is unknown. Hence, the purpose of thepresent study was to perform an in silico docking of selective bioactive compounds of aqueous extract of fruit of P.acidus (PAFAE) against MAPK1. Mitogen activated protein kinase is a family of serine threonine specific protein kinases- MAPK1/ERK1/2, JNK1-3, p38MAPK and ERK5.Activation ofMAPK1 promotes cell survival in certain tissues by inhibiting proapoptotic proteins and by stimulating anti apoptotic factors.   Methodology: In silico docking studies was carried out using bioinformatics tools.The active compounds (Trihomovitamin D3; 2Z,6Z,8Z,12E Hexadecatetraenoic acid, Methyl prednisolone, Hydroxysalmeterol and Tridesacetoxykhivorin) ofP.acidus aqueous fruit extract were docked against MAPK1 resulting in receptor-ligand complex.   Results: The binding energy is correlated with the probability of affinity and stable bound between ligand and its receptor.   Conclusion: The molecular docking study of selective bioactive compounds of PAFAE with MAPK1 protein revealed that Tridesacetoxykhivorinand Methyl Prednisolone, is having good interaction in favorable pose with MAPK1 as shownfrom theireffective binding energy(-7.79kcal/mol and -7.19 kcal/mol), strong bond length and interactions with active site of MAPK1.


2019 ◽  
Vol 70 (9) ◽  
pp. 3387-3391
Author(s):  
Gabriela Tataringa ◽  
Balasubramanian Sathyamurthy ◽  
Ion Sandu ◽  
Ana Maria Zbancioc

In this study, the binding efficiency of 10 coumarin derivatives with some selected proteins from Dengue virus through in silico method was done. By virtual screening and docking results, we have found that the hybrid derivative between coumarin and isatin has the most convenient binding activity for the seven selected proteins.


RSC Advances ◽  
2015 ◽  
Vol 5 (99) ◽  
pp. 80967-80977 ◽  
Author(s):  
Goutam Brahmachari ◽  
Abhishek Kumar ◽  
Ambrish Kumar Srivastava ◽  
Shashi Gangwar ◽  
Neeraj Misra ◽  
...  

One-pot green synthesis and combined spectral and theoretical studies of 2-(4-fluorophenyl)-2-(4-fluorophenylamino)acetonitrile along with its X-ray crystallographic properties are described.


Sign in / Sign up

Export Citation Format

Share Document