scholarly journals Numerical investigation of seismic behaviour of railway embankments in cold regions

2021 ◽  
Vol 73 (08) ◽  
pp. 781-790

To investigate more fully seismic behaviour of the Qinghai-Tibet railway embankment, a comprehensive discussion and a781nalysis is conducted in this paper by applying a numerical technique. Specifically, the one dimensional equivalent linear ground response analysis was conducted in permafrost regions. On this basis, the seismic response of a typical railway embankment was further studied by applying the nonlinear dynamic finite element analysis method. As a result, nonlinear behaviour of permafrost sites was determined, and the dynamic acceleration, velocity and displacement of the embankment was discussed and the quantitative assessment was approximately estimated. The results indicate that the dynamic response of the embankment has distinct nonlinear characteristics. The peak ground acceleration coefficient at the embankment shoulder is larger than the natural ground surface, marking a 73% increase compared to the coefficient on the natural ground surface. When the seismic intensity reaches a certain value, a plastic zone gradually appears in the embankment, and a continuous extension of the plastic zone can be noted with an increase in peak acceleration of the input seismic wave. The findings of this research may provide an additional insight and have significant implications for further research of cold regions.

2020 ◽  
Vol 6 (10) ◽  
pp. 1906-1921
Author(s):  
Manish Bhutani ◽  
Sanjeev Naval

Stability of infrastructure during earthquakes demands ground response analysis to be carried out for a particular region as the ground surface may suffer from amplified Peak Ground Acceleration (PGA) as compared to bedrock PGA causing instability. Many studies have been carried out the world over using different techniques but very few studies have been carried out for the northern part of India, Punjab situated at latitude of 31.326° N and longitude of 75.576° E, which is highly seismic and lies in seismic zone IV as per IS:1893-2016. In this paper 1-D equivalent non-linear ground response analysis has been conducted for sixteen sites of Jalandhar region, Punjab (India) by using five earthquake motions. Input ground motions are selected from the worldwide-recorded database based on the seismicity of the region. Based on the average SPT-N values, all the sites have been classified as per the guidelines of National Earthquake Hazard Reduction program (NEHRP). Shear modulus (G) was calculated using correlation between G and SPT–N Value. The ground surface PGA varies from 0.128 to 0.292 g for the sites of Jalandhar region with Amplification Factor values varying from 1.08 to 2.01. Hence the present study will be useful to the structural designers as an input towards suitable earthquake resistant design of structures for similar sites.


2014 ◽  
Vol 915-916 ◽  
pp. 122-125
Author(s):  
Xiao Fei Li ◽  
Rui Sun ◽  
Xiao Bo Yu

In order to test the applicable of the seismic response analysis procedures SHAKE2000 and LSSRLI-1 for class ІІ site, 17 stations and 35 underground strong motion records of KiK-net are selected from Class ІІ site. 210 working conditions are used to verify the applicability of the two soil seismic response analysis programs at Class ІІ site. These two programs are used to calculate the selected working conditions, giving the peak acceleration of the ground, the shear strain and the ground acceleration response spectra. By analyzing the results of the two programs and the measured results to assess the degree of difference between the two methods and which program is closer to the real situation. Studies have shown that in class ІІ site, in most cases, the results of SHAKE2000 and LSSRLI-1 differ little. While comparing with the actual records, SHAKE2000 is closer to the strong motion records.


2021 ◽  
Vol 21 (1) ◽  
pp. 231-238
Author(s):  
Seokgyeong Hong ◽  
Jaehun Ahn

The importance of establishing a disaster prevention plan considering seismic performance is being highlighted to reduce damage to structures caused by earthquakes. Earthquake waves propagate from the bedrock to the ground surface through the soil. During the transmission process, they are amplified in a specific frequency range, and the degree of amplification depends mainly on the characteristics of the ground. Therefore, a seismic response analysis process is essential for enhancing the reliability of the seismic design. We propose a model for predicting seismic waves on the surface from seismic waves measured on the bedrock based on Multilayer Perceptron (MLP) and Convolutional Neural Networks (CNN) and validate the applicability of the proposed model with Spectral Acceleration (SA). Both the proposed models based on MLP and CNN successfully predicted the seismic response of the surface. The CNN-based model performed better than the MLP-based model, with a 10% smaller average error. We plan to implement the physical properties of the ground, such as shear wave velocity, to create a more versatile model in the future.


2021 ◽  
Author(s):  
A.H. Amjadi ◽  
Ali johari

Abstract The field and laboratory evidence of nonlinear soil behavior, even at small strains, emphasizes the ‎importance of employing nonlinear methods in seismic ground response analysis. Additionally, ‎determination of dynamic characteristics of soil layers always includes some degree of uncertainty. Most of ‎previous stochastic studies of ground response analysis have focused only on uncertainties of soil ‎parameters, and the effect of soil sample location has been mostly ignored. This study attempts to couple ‎nonlinear time-domain ground response analysis with uncertainty of soil parameters considering existing ‎boreholes’ ‎location through a geostatistical method using a program written in MATLAB. To evaluate ‎the efficiency of the proposed method, stochastic seismic ground responses at construction location were compared with those of the non-stationary random ‎field method‎ through real site data. The ‎results demonstrate that applying the boreholes’ ‎location significantly affects not only the ground ‎responses but also their Coefficient Of Variation (COV). Furthermore, the mean value of the seismic ‎responses is affected more considerably by the values of soil parameters at the vicinity of the construction location. It is also inferred that considering boreholes’ location may reduce the COV of the seismic ‎responses. Among the surface responses in the studied site, the values of Peak Ground Displacement (PGD) ‎and Peak Ground Acceleration (PGA) reflect the highest and ‎lowest dispersion due to uncertainties of soil ‎properties through both non-stationary random field and geostatistical methods.


2013 ◽  
Vol 4 (1) ◽  
pp. 83-101 ◽  
Author(s):  
Shiv Shankar Kumar ◽  
A. Murali Krishna

In this study, one dimensional equivalent–linear ground response analyses were performed for some typical sites in the Guwahati city, India. Six bore locations covering about 250 km2 area of the city were considered for the analyses. As the strong motion significantly influences the ground response, seven different recorded ground motions, varying in magnitude (6.1 to 8.1) and other ground motion parameters, were adopted. Seismic site analyses were carried out for all layers of borelogs using all the seven earthquakes. Results are presented in terms of surface acceleration histories, strain and shear stress ratio variation, response spectrum, Fourier amplitude ratio versus frequency. The results indicate that accelerations were amplified the most at the surface level. The range of peak ground acceleration (PGA) values obtained at the ground surface is about 0.2 g to 0.79 for a range of PGA considered at bedrock level (rigid half space at bottom of borelog) of 0.1 g to 0.34 g. The Fourier amplifications of ground motion at surface are in the range of 4.14 – 8.99 for a frequency band of 1.75 Hz to 3.13 Hz. The maximum spectral acceleration at six locations varies in the range of 1.0 g – 4.71 g for all the seven earthquakes. The study clearly demonstrated the role for site effect and the type of ground motion on the ground response. For a given earthquake motion, amplification factors at surface level change by almost about 20% to 70% depending on local site conditions.


Author(s):  
Haruyuki Yamamoto ◽  
Munkhunur Togtokhbuyan

One-dimensional layered soil lumped mass ground response analysis was conducted for the representative site in Ulaanbaatar, Mongolia. The surficial geology of the site is predominantly composed of the gravely and sandy soil typical of this region in the central part of Ulaanbaatar. The natural period of soil profiles needs to be investigated under several circumstances. For example, these parameters-based study has indicated that damage due to earthquakes occurs when the natural periods, T1 and T2, of the ground are closer to that of a superstructure. Various computational procedures or methods have been proposed for this kind of the ground response analysis. In this paper, the numerical analysis method such as the lumped mass method within eigenvalue analysis is used to determine the natural periods of the ground. The ground surface, soil deposits, and bedrock are assumed to be horizontal. The soil deposits are subjected to shear deformation such as shear modulus, G, on the other hand, excitation of vibration could be a shear modulus on each layer. As well as to determine an engineering bedrock depth in the site, the methodology that is utilized in this paper is focused on the use of the correlation between SPT-N value and soil elastic Young's modulus, E, in the soil profiles, and used over 100 boreholes data with SPT-N values in the vicinity of Ulaanbaatar.


2014 ◽  
Vol 919-921 ◽  
pp. 1031-1034
Author(s):  
Xiao Fei Li ◽  
Rui Sun

In order to test the applicable of the two equivalent linear seismic response analysis procedures SHAKE2000 and LSSRLI-1 for class І site, 21 underground strong motion records were selected from 11 stations of KiK-net as input earthquake motions. By using these two programs to calculate the peak ground acceleration, soil maximum shear strain and acceleration response spectra. By comparing the results of the two procedures and the measured results to evaluate the proximity of these two methods and then judge which program is closer to the real situation. Studies have shown that in class І site, the results of SHAKE2000 and LSSRLI-1 differ little; but according to the measured records, there are some differences between the two programs results and the measured records. While no matter comparing from which side, SHAKE2000 is closer to the earthquake records.


2021 ◽  
Vol 930 (1) ◽  
pp. 012089
Author(s):  
A Jalil ◽  
T F Fathani ◽  
I Satyarno ◽  
W Wilopo

Abstract The 7.5 Mw Palu earthquake on September 28, 2018, was caused by the Palu Koro fault. This earthquake produced forceful wave propagation in the soil layer and generated enormous surface damage in Balaroa, Petobo, and Jono Oge. Estimations of soil amplification at a specific location are helpful as guidance for infrastructure development. This study examined the effect of local soil in modifying the one-dimensional linear soil response in Balaroa, Petobo, and Jono Oge regions, considering the data of various sites in those regions. The soil response was observed to obtain the synthetic input motion and its effects in the time history of surface acceleration, the ratio of shear stress to effective vertical stress to spectrum response time, and the Fourier amplitude versus frequency ratio. Amplification is standard for ground acceleration, which considers the strong ground motion with the acquired frequency and duration of the content. The results showed that the peak of ground acceleration amplification factors for Balaroa, Petobo, and Jono Oge was around 1.49, 2.05, and 1.27 times, respectively. With a lack of information at the particular site, designers will use the response spectrum obtained along the soil layer to develop earthquake-resistant geotechnical structures in locations close to Palu.


2021 ◽  
Vol 11 (22) ◽  
pp. 10760
Author(s):  
Seokgyeong Hong ◽  
Huyen-Tram Nguyen ◽  
Jongwon Jung ◽  
Jaehun Ahn

One of the purposes of earthquake engineering is to mitigate the damages in buildings and infrastructures and, therefore, reduce the impact of earthquakes on society. Seismic ground response analysis refers to the process of evaluating the ground surface motions based on the bedrock motion. On the other hand, deep learning techniques have been developing fast, and they are establishing their application in the civil engineering field. This study proposes two convolutional neural network (CNN) models to estimate the seismic response of the surface based on the seismic motion measured at 100 m level beneath the surface, and selected the one which outperforms the other as the main model. The performances of the main model are compared with those of a physical software SHAKE2000. Twelve sites that include 100 earthquake datasets, whose moment magnitude is higher than 6 and PGA is higher than 0.1 g were selected. In addition, the corresponding earthquake datasets are used for the CNN model. Whereas the conventional software overestimated the values of the amplitudes for most of the sites, the proposed CNN model predicts fairly well both the values of the amplitudes and the natural periods where responses amplify the most with few exceptions. The proposed model especially outperforms the conventional software when the natural periods range from 0.01 to 0.3 s. For specific sites, the average mean squared errors of the proposed model are even dozens of times lower than those of the physical conventional software.


Sign in / Sign up

Export Citation Format

Share Document