Tool Flank Wear Experiment Study on High Speed Turning Nickel-based Superalloy Inconel 718

2016 ◽  
Vol 9 (10) ◽  
pp. 47-54
Author(s):  
Yubo Liu ◽  
Feng Zhun ◽  
Gao Zhiqiang ◽  
Xu Yanfeng
2014 ◽  
Vol 800-801 ◽  
pp. 548-552
Author(s):  
Li Fu Xu ◽  
Wei Liang Dong ◽  
Shu Tao Huang ◽  
Bao Lin Dai

The wear morphology of rake face and flank face of tool is investigated by turning titanium alloy TC4 with CBN solid tool. It has been observed that the main wear form of rake face and flank face of tool is groove wear. The relation between tool flank wear and cutting speeds, feed rate, and cutting depth obtained from experimental data is given.


2014 ◽  
Vol 69 (1) ◽  
pp. 46-53 ◽  
Author(s):  
R. L. Peng ◽  
J.-M. Zhou ◽  
S. Johansson ◽  
A. Bellinius ◽  
V. Bushlya ◽  
...  

2021 ◽  
Vol 5 (2) ◽  
pp. 34
Author(s):  
Guangxian Li ◽  
Ge Wu ◽  
Wencheng Pan ◽  
Rizwan Abdul Rahman Rashid ◽  
Suresh Palanisamy ◽  
...  

Polycrystalline diamond (PCD) tools are widely used in industry due to their outstanding physical properties. However, the ultra-high hardness of PCD significantly limits the machining efficiency of conventional abrasive grinding processes, which are utilized to manufacture PCD tools. In contrast, electrical discharge grinding (EDG) has significantly higher machining efficiency because of its unique material removal mechanism. In this study, the quality and performance of PCD tools machined by abrasive grinding and EDG were investigated. The performance of cutting tools consisted of different PCD materials was tested by high-speed turning of titanium alloy Ti6Al4V. Flank wear and crater wear were investigated by analyzing the worn profile, micro morphology, chemical decomposition, and cutting forces. The results showed that an adhesive-abrasive process dominated the processes of flank wear and crater wear. Tool material loss in the wear process was caused by the development of thermal cracks. The development of PCD tools’ wear made of small-sized diamond grains was a steady adhesion-abrasion process without any catastrophic damage. In contrast, a large-scale fracture happened in the wear process of PCD tools made of large-sized diamond grains. Adhesive wear was more severe on the PCD tools machined by EDG.


2009 ◽  
Vol 30 (5) ◽  
pp. 1718-1725 ◽  
Author(s):  
D.G. Thakur ◽  
B. Ramamoorthy ◽  
L. Vijayaraghavan

2011 ◽  
Vol 58 (1-4) ◽  
pp. 141-151 ◽  
Author(s):  
Jinming Zhou ◽  
Volodymyr Bushlya ◽  
Pajazit Avdovic ◽  
Jan Eric Ståhl

Procedia CIRP ◽  
2018 ◽  
Vol 77 ◽  
pp. 602-605 ◽  
Author(s):  
Berend Denkena ◽  
Thilo Grove ◽  
Alexander Krödel ◽  
Lars Ellersiek

2013 ◽  
Vol 589-590 ◽  
pp. 209-214 ◽  
Author(s):  
Jia Yan Zhao ◽  
Yu Can Fu ◽  
Jiu Hua Xu ◽  
Lin Tian ◽  
Lu Yang

Single-grain grinding test plays an important part in studying the high speed grinding mechanism of materials. In this paper, a new experimental system for high speed grinding test with single diamond grain is presented. The differences of surface topography and chip morphology of Inconel 718 machined by single diamond grain and single CBN grain were evaluated. The grinding forces and corresponding maximum undeformed chip thickness were measured under different grinding speeds. The chips, characterized by crack and segment band feature like the cutting segmented chips, were collected to study the high speed grinding mechanism of nickel-based superalloy. The results show that the grinding speed has an important effect on the forces and chip formation, partly due to the temperature variation. As the speed increases, the groove surface becomes smoother.


Procedia CIRP ◽  
2018 ◽  
Vol 71 ◽  
pp. 440-445 ◽  
Author(s):  
Z Chen ◽  
J.M. Zhou ◽  
R.L. Peng ◽  
R M’Saoubi ◽  
D Gustafsson ◽  
...  

2010 ◽  
Vol 126-128 ◽  
pp. 653-657 ◽  
Author(s):  
Guang Ming Zheng ◽  
Jun Zhao ◽  
Xin Yu Song ◽  
Cao Qing Yan ◽  
Yue En Li

This paper explores the wear mechanisms of a Sialon ceramic tool in ultra high speed turning of Nickel-based alloy Inconel 718. Microstructures of the chips are also investigated. Stereo optical microscope and scanning electron microscope (SEM) are employed to observe worn surfaces of the tool produced by various wear mechanisms and morphological features of chips. In addition, the elemental compositions of wear products are evaluated by energy-dispersive X-ray spectroscopy (EDS). As a result of the study, wear mechanisms identified in the machining tests involve adhesive wear and abrasive wear. At the initial stage of cutting process, crater wear and flank wear are the main wear patterns. At the rapid wear stage, the SEM and EDS results showed that the adhered elements of Inconel 718 alloy on the tool rake face such as Ni, Fe and Cr accelerated the tool wear rate. Meanwhile, it was found that the chip morphology was serrated type under ultra high speed cutting condition, furthermore, the tendency of serration of the chip increased with the increase in cutting speed and feed rate.


Sign in / Sign up

Export Citation Format

Share Document