scholarly journals EVALUATION OF DONOR ABILITIES OF DURUM WHEAT IMMUNE INTROGRESSIVE LINES DERIVED FROM TRITICUM TIMOPHEEVII ZHUK.

2016 ◽  
Vol 2 (4) ◽  
pp. 35
Author(s):  
L. P. Khlebova ◽  
N. V. Barysheva ◽  
A. P. Kraynov
Author(s):  
L. P. Khlebova ◽  
N. V. Barysheva

<p>Breeding for long-lasting resistance to pathogens in cultivated crops is possible only in the presence of various donors of immune genes. Distant hybridization is considered as the main way to solve strategic tasks in this direction. Tetraploid endemic wheat Triticum timopheevii Zhuk. has a complex immunity to harmful fungal diseases and can be a valuable source of useful genes to create immune wheat varieties. A genetic analysis of the factors determining the resistance to Puccinia graminis Pers. f. sp. tritici Erikss. et Henn. in three durum wheat introgressive lines derived from T. timopheevii has been carried out. The study of the genetic control of resistance to stem rust was performed by hybridological analysis in F1 – F3 hybrid generations derived from the crossing immune lines with an initial variety of durum wheat. Infectious background was created in the experimental field by inoculating plants at tillering stage with race 17. We discovered three genes have determined the resistance in both HT-10 and HT-12 lines: one dominant, one recessive and one dominant complementary to the first two genes. HT-7 line carries in its genome four genes: two dominants, one semi dominant providing the resistance at complementary interaction with another dominant gene. Independent inherited factors of resistance to stem rust in T. timopheevii are localized in different linkage groups, exhibiting homology with the durum wheat chromosomes. The possibility of the using new sources of resistance to protect wheat crops from plant pathogens was discussed.<br /><br /></p>


1998 ◽  
Vol 78 (4) ◽  
pp. 683-687 ◽  
Author(s):  
Dapeng Bai ◽  
D. R. Knott ◽  
Janice Zale

Triticum timopheevii (Zhuk.) Zhuk. is noted for its resistance to diseases including leaf and stem rust of wheat. Only one gene (Lr18) for leaf rust resistance has been transferred from T. timopheevii to bread wheat. The objectives of this work were to study the inheritance of leaf rust resistance in five accessions of T. timopheevii and to transfer genes for resistance into durum and bread wheats. A diallel set of crosses was made among five T. timopheevii accessions that gave a fleck infection type with an isolate of leaf rust race CBB. None of the F2 populations of the 10 crosses segregated for resistance, indicating that the five accessions all had at least one gene for resistance in common. Several accessions were crossed and backcrossed twice to durum and to bread wheat. At least three genes for leaf rust resistance were transferred to durum wheat and one to bread wheat. The gene transferred to bread wheat and one of those transferred to durum wheat conditioned good resistance to a set of 10 diverse races of leaf rust. Resistance conditioned by all three genes was dominant in durum wheat but the one gene was recessive in bread wheat. Monosomic analysis of the bread wheat line showed that the gene is on chromosome 1A. It should be useful in breeding for leaf rust resistance in both durum and bread wheat. Key words: Triticum timopheevii, leaf rust resistance, durum wheat, bread wheat


Genome ◽  
1997 ◽  
Vol 40 (2) ◽  
pp. 201-210 ◽  
Author(s):  
Nobuaki Asakura ◽  
Chiharu Nakamura ◽  
Ichiro Ohtsuka

Alien cytoplasms cause a wide range of phenotypic alterations in the nucleus–cytoplasm (NC) hybrids in the Triticeae. Nuclear genomes of timopheevii wheat (Triticum timopheevii and Triticum araraticum) are fully compatible with the cytoplasm of Aegilops squarrosa, while those of a majority of emmer or durum wheat cultivars and more than half the wild emmer wheats are incompatible, and a maternal 1D chromosome is required to restore seed viability and male fertility in the NC hybrids. A euploid NC hybrid of Triticum durum cv. Langdon with Ae. squarrosa cytoplasm produced by introgressing the NC compatibility (Ncc) gene from T. timopheevii was used to identify random amplified polymorphic DNA (RAPD) markers linked to it. After a survey of 200 random decamer primers, four markers were selected, all of which were completely linked in 64 individuals of a SB8 mapping population. One marker was derived from a single locus, while three others were from interspersed repetitive sequences. Also, the hybrid chromosomes and those of the parental T. durum had identical C-banding patterns. RAPD-PCR analysis of 65 accessions from wild and cultivated tetraploid wheat species showed the exclusive presence of the markers in timopheevii wheat. In conclusion, the chromosomal region flanking Ncc of T. timopheevii is highly conserved in the genome of this group of tetraploid wheats.Key words: nucleus–cytoplasm compatibility, Ncc gene, Aegilops squarrosa, Triticum timopheevii, tetraploid wheat, RAPD marker.


2015 ◽  
Vol 1 (3-4) ◽  
pp. 160
Author(s):  
L. P. Khlebova ◽  
N. V. Barysheva

1994 ◽  
Vol 90 (4) ◽  
pp. 715-721 ◽  
Author(s):  
A. Rascio ◽  
C. Platani ◽  
G. Scalfati ◽  
A. Tonti ◽  
N. Di Fonzo

1996 ◽  
Vol 97 (3) ◽  
pp. 475-480 ◽  
Author(s):  
Andrea Bottari ◽  
Antonella Capocchi ◽  
Luciano Galleschi ◽  
Andrea Jopova ◽  
Franco Saviozzi

2018 ◽  
Vol 319 (10) ◽  
pp. 40-42
Author(s):  
N.R. Magomedov ◽  
◽  
Z.N. Abdullaev ◽  
N.N. Magomedov ◽  
◽  
...  
Keyword(s):  

2014 ◽  
Vol 42 (4) ◽  
pp. 677-686
Author(s):  
M. Rajabi Hashjin ◽  
M.H. Fotokian ◽  
M. Agahee Sarbrzeh ◽  
M. Mohammadi ◽  
D. Talei

Sign in / Sign up

Export Citation Format

Share Document