The transfer of leaf rust resistance from Triticum timopheevii to durum and bread wheat and the location of one gene on chromosome 1A

1998 ◽  
Vol 78 (4) ◽  
pp. 683-687 ◽  
Author(s):  
Dapeng Bai ◽  
D. R. Knott ◽  
Janice Zale

Triticum timopheevii (Zhuk.) Zhuk. is noted for its resistance to diseases including leaf and stem rust of wheat. Only one gene (Lr18) for leaf rust resistance has been transferred from T. timopheevii to bread wheat. The objectives of this work were to study the inheritance of leaf rust resistance in five accessions of T. timopheevii and to transfer genes for resistance into durum and bread wheats. A diallel set of crosses was made among five T. timopheevii accessions that gave a fleck infection type with an isolate of leaf rust race CBB. None of the F2 populations of the 10 crosses segregated for resistance, indicating that the five accessions all had at least one gene for resistance in common. Several accessions were crossed and backcrossed twice to durum and to bread wheat. At least three genes for leaf rust resistance were transferred to durum wheat and one to bread wheat. The gene transferred to bread wheat and one of those transferred to durum wheat conditioned good resistance to a set of 10 diverse races of leaf rust. Resistance conditioned by all three genes was dominant in durum wheat but the one gene was recessive in bread wheat. Monosomic analysis of the bread wheat line showed that the gene is on chromosome 1A. It should be useful in breeding for leaf rust resistance in both durum and bread wheat. Key words: Triticum timopheevii, leaf rust resistance, durum wheat, bread wheat

Plant Disease ◽  
2008 ◽  
Vol 92 (12) ◽  
pp. 1650-1654 ◽  
Author(s):  
S. A. Herrera-Foessel ◽  
R. P. Singh ◽  
J. Huerta-Espino ◽  
H. M. William ◽  
A. Djurle ◽  
...  

Leaf rust, caused by Puccinia triticina, is an important disease of durum wheat (Triticum turgidum subsp. durum) worldwide, and the most effective way to control it is through the use of resistant cultivars. A partially dominant leaf rust resistance gene present in the International Maize and Wheat Improvement Center-derived Chilean cv. Guayacan INIA and its sister line Guayacan 2 was mapped to chromosome arm 6BS by identifying linked amplified fragment length polymorphisms (AFLPs) and mapping two of the molecular markers in common wheat (T. aestivum) linkage maps of the International Triticeae Mapping Initiative and Oligoculm × Fukuho-komugi populations. Comparison of infection type responses of the two resistant durums with common wheat testers carrying the previously mapped resistance genes Lr36 and Lr53 on 6BS, and their chromosomal positions, indicated that the resistance gene in durum wheat Guayacan INIA is a new leaf rust resistance gene, which was designated as Lr61. Gene Lr61 is effective against the P. triticina race BBG/BN predominant in northwestern Mexico and other races infecting durum wheat in various countries.


2009 ◽  
Vol 45 (No. 1) ◽  
pp. 26-30 ◽  
Author(s):  
M.A. Khan ◽  
R.G. Saini

: The bread wheat (Triticum aestivum L.) cultivar PBW65 has shown hight levels of resistance to the most frequent and highly virulent Indian race 77-5 of leaf rust (Puccinia triticina). The infection type and disease severity indicated a non-hypersensitive type of resistance against the race 77-5 in PBW65. The cultivar PBW65 was crossed with the leaf rust susceptible cultivar WL711 to determine the mode of inheritance of the resistance. The segregation for resistant and susceptible plants in the F<sub>2</sub> and F<sub>3</sub> generations revealed, that two genes, each showing additive effects, were likely to confer resistance to leaf rust in PBW65. Intercrossing of PBW65 with Cook (Lr34), RL6058 (Lr34) and HD2009, possessing a similar resistance level like PBW65, revealed that the genes for leaf rust resistance in PBW65 were non-allelic to Cook (Lr34), RL6058 (Lr34) as well as to the gene(s) in HD2009. It is concluded that the cultivar PBW65 is a novel source of non-hypersensitive leaf rust resistance.


Genetics ◽  
2003 ◽  
Vol 164 (2) ◽  
pp. 655-664 ◽  
Author(s):  
Li Huang ◽  
Steven A Brooks ◽  
Wanlong Li ◽  
John P Fellers ◽  
Harold N Trick ◽  
...  

Abstract We report the map-based cloning of the leaf rust resistance gene Lr21, previously mapped to a generich region at the distal end of chromosome arm 1DS of bread wheat (Triticum aestivum L.). Molecular cloning of Lr21 was facilitated by diploid/polyploid shuttle mapping strategy. Cloning of Lr21 was confirmed by genetic transformation and by a stably inherited resistance phenotype in transgenic plants. Lr21 spans 4318 bp and encodes a 1080-amino-acid protein containing a conserved nucleotide-binding site (NBS) domain, 13 imperfect leucine-rich repeats (LRRs), and a unique 151-amino-acid sequence missing from known NBS-LRR proteins at the N terminus. Fine-structure genetic analysis at the Lr21 locus detected a noncrossover (recombination without exchange of flanking markers) within a 1415-bp region resulting from either a gene conversion tract of at least 191 bp or a double crossover. The successful map-based cloning approach as demonstrated here now opens the door for cloning of many crop-specific agronomic traits located in the gene-rich regions of bread wheat.


Genome ◽  
2017 ◽  
Vol 60 (12) ◽  
pp. 1076-1085 ◽  
Author(s):  
M. Niranjana ◽  
Vinod ◽  
J.B. Sharma ◽  
Niharika Mallick ◽  
S.M.S. Tomar ◽  
...  

Leaf rust (Puccinia triticina) is a major biotic stress affecting wheat yields worldwide. Host-plant resistance is the best method for controlling leaf rust. Aegilops speltoides is a good source of resistance against wheat rusts. To date, five Lr genes, Lr28, Lr35, Lr36, Lr47, and Lr51, have been transferred from Ae. speltoides to bread wheat. In Selection2427, a bread wheat introgresed line with Ae. speltoides as the donor parent, a dominant gene for leaf rust resistance was mapped to the long arm of chromosome 3B (LrS2427). None of the Lr genes introgressed from Ae. speltoides have been mapped to chromosome 3B. Since none of the designated seedling leaf rust resistance genes have been located on chromosome 3B, LrS2427 seems to be a novel gene. Selection2427 showed a unique property typical of gametocidal genes, that when crossed to other bread wheat cultivars, the F1 showed partial pollen sterility and poor seed setting, whilst Selection2427 showed reasonable male and female fertility. Accidental co-transfer of gametocidal genes with LrS2427 may have occurred in Selection2427. Though LrS2427 did not show any segregation distortion and assorted independently of putative gametocidal gene(s), its utilization will be difficult due to the selfish behavior of gametocidal genes.


2014 ◽  
Vol 104 (12) ◽  
pp. 1322-1328 ◽  
Author(s):  
Alexander Loladze ◽  
Dhouha Kthiri ◽  
Curtis Pozniak ◽  
Karim Ammar

Leaf rust, caused by Puccinia triticina, is one of the main fungal diseases limiting durum wheat production. This study aimed to characterize previously undescribed genes for leaf rust resistance in durum wheat. Six different resistant durum genotypes were crossed to two susceptible International Maize and Wheat Improvement Center (CIMMYT) lines and the resulting F1, F2, and F3 progenies were evaluated for leaf rust reactions in the field and under greenhouse conditions. In addition, allelism tests were conducted. The results of the study indicated that most genotypes carried single effective dominant or recessive seedling resistance genes; the only exception to this was genotype Gaza, which carried one adult plant and one seedling resistance gene. In addition, it was concluded that the resistance genes identified in the current study were neither allelic to LrCamayo or Lr61, nor were they related to Lr3 or Lr14a, the genes that already are either ineffective or are considered to be vulnerable for breeding purposes. A complicated allelic or linkage relationship between the identified genes is discussed. The results of the study will be useful for breeding for durable resistance by creating polygenic complexes.


Plant Disease ◽  
2008 ◽  
Vol 92 (3) ◽  
pp. 469-473 ◽  
Author(s):  
S. A. Herrera-Foessel ◽  
R. P. Singh ◽  
J. Huerta-Espino ◽  
H. M. William ◽  
V. Garcia ◽  
...  

Leaf rust, caused by Puccinia triticina, is an important disease of durum wheat (Triticum turgidum subsp. durum) and only a few designated resistance genes are known to occur in this crop. A dominant leaf rust resistance gene in the Chilean durum cv. Llareta INIA was mapped to chromosome arm 7BL through bulked segregant analysis using the amplified fragment length polymorphism (AFLP) technique, and by mapping three polymorphic markers in the common wheat (T. aestivum) International Triticeae Mapping Initiative population. Several simple sequence repeat (SSR) markers, including Xgwm344-7B and Xgwm146-7B, were associated with the leaf rust resistance gene. Resistance response and chromosomal position indicated that this gene is likely to be Lr14a. The SSR markers Xgwm344-7B and Xgwm146-7B and one AFLP marker also differentiated common wheat cv. Thatcher from the near-isogenic line with Lr14a, as well as durum ‘Altar C84’ from durum wheat with Lr14a. This is the first report of the presence of Lr14a in durum wheat, although the gene originally was transferred from emmer wheat ‘Yaroslav’ to common wheat. Lr14a is also present in CIMMYT-derived durum ‘Somateria’ and effective against Mexican and other P. triticina races of durum origin. Lr14a should be deployed in combination with other effective leaf rust resistance genes to prolong its effectiveness in durum wheat.


Sign in / Sign up

Export Citation Format

Share Document