scholarly journals Characterization of species associated with Pythium soft rot of ginger and evaluation of Pythium Oligandrum as a biocontrol

2016 ◽  
Author(s):  
Duy Phu Le
2021 ◽  
Vol 12 ◽  
Author(s):  
Paul Daly ◽  
Siqiao Chen ◽  
Taiqiang Xue ◽  
Jingjing Li ◽  
Taha Majid Mahmood Sheikh ◽  
...  

Biological control is a promising approach to suppress diseases caused by Pythium spp. such as Pythium soft rot of ginger caused by P. myriotylum. Unusually for a single genus, it also includes species that can antagonize Pythium plant pathogens, such as Pythium oligandrum. We investigated if a new isolate of P. oligandrum could antagonize P. myriotylum, what changes occurred in gene expression when P. oligandrum (antagonist) and P. myriotylum (host) interacted, and whether P. oligandrum could control soft-rot of ginger caused by P. myriotylum. An isolate of P. oligandrum, GAQ1, recovered from soil could antagonize P. myriotylum in a plate-based confrontation assay whereby P. myriotylum became non-viable. The loss of viability of P. myriotylum coupled with how P. oligandrum hyphae could coil around and penetrate the hyphae of P. myriotylum, indicated a predatory interaction. We investigated the transcriptional responses of P. myriotylum and P. oligandrum using dual-RNAseq at a stage in the confrontation where similar levels of total transcripts were measured from each species. As part of the transcriptional response of P. myriotylum to the presence of P. oligandrum, genes including a subset of putative Kazal-type protease inhibitors were strongly upregulated along with cellulases, elicitin-like proteins and genes involved in the repair of DNA double-strand breaks. In P. oligandrum, proteases, cellulases, and peroxidases featured prominently in the upregulated genes. The upregulation along with constitutive expression of P. oligandrum proteases appeared to be responded to by the upregulation of putative protease inhibitors from P. myriotylum, suggesting a P. myriotylum defensive strategy. Notwithstanding this P. myriotylum defensive strategy, P. oligandrum had a strong disease control effect on soft-rot of ginger caused by P. myriotylum. The newly isolated strain of P. oligandrum is a promising biocontrol agent for suppressing the soft-rot of ginger. The dual-RNAseq approach highlights responses of P. myriotylum that suggests features of a defensive strategy, and are perhaps another factor that may contribute to the variable success and durability of biological attempts to control diseases caused by Pythium spp.


2013 ◽  
Vol 48 (3) ◽  
pp. 295-302
Author(s):  
Lei Zhenzhen ◽  
Ye Jinglong ◽  
Cheng Haili ◽  
Chen Yun ◽  
Wang Huixing ◽  
...  

2019 ◽  
Vol 167 (11-12) ◽  
pp. 655-666 ◽  
Author(s):  
Athidtaya Kumvinit ◽  
Angsana Akarapisan
Keyword(s):  
Soft Rot ◽  

Plant Disease ◽  
2021 ◽  
Author(s):  
Paul Daly ◽  
Yifan Chen ◽  
Qimeng Zhang ◽  
Hongli Zhu ◽  
Jingjing Li ◽  
...  

Pythium soft rot is a major soil-borne disease of crops such as ginger (Zingiber officinale). Our objective was to identify which Pythium species were associated with Pythium soft-rot of ginger in China, where approximately 20% of global ginger production is from. Oomycetes infecting ginger rhizomes from seven provinces were investigated using two molecular markers, the internal transcribed spacer (ITS) and cytochrome c oxidase subunit II (CoxII). In total, 81 isolates were recovered and approximately 95% of the isolates were identified as Pythium myriotylum and the other isolates were identified as either P. aphanidermatum or P. graminicola. Notably, the P. myriotylum isolates from China did not contain the SNP in the CoxII sequence found previously in the P. myriotylum isolates infecting ginger in Australia. A subset of 36 of the isolates was analyzed repeatedly by temperature-dependent growth, severity of disease on ginger plants and aggressiveness of colonization of ginger rhizome sticks. In the pathogenicity assays, 32/36 of the isolates were able to significantly infect and cause severe disease symptoms on the ginger plants. A range of temperature-dependent growth, disease severity and aggressiveness in colonization was found with a significant moderate positive correlation between growth and aggressiveness of colonization of the ginger sticks. This study identified P. myriotylum as the major oomycete pathogen in China from infected ginger rhizomes and suggests that P. myriotylum should be a key target to control soft rot of ginger disease.


2020 ◽  
Vol 157 (3) ◽  
pp. 685-691
Author(s):  
A. Prokić ◽  
N. Zlatković ◽  
N. Kuzmanović ◽  
M. Ivanović ◽  
K. Gašić ◽  
...  

2020 ◽  
Vol 21 (9) ◽  
pp. 3170
Author(s):  
Mikhail M. Shneider ◽  
Anna A. Lukianova ◽  
Peter V. Evseev ◽  
Anna M. Shpirt ◽  
Marsel R. Kabilov ◽  
...  

Phytopathogenic bacteria belonging to the Pectobacterium and Dickeya genera (soft-rot Pectobacteriaceae) are in the focus of agriculture-related microbiology because of their diversity, their substantial negative impact on the production of potatoes and vegetables, and the prospects of bacteriophage applications for disease control. Because of numerous amendments in the taxonomy of P. carotovorum, there are still a few studied sequenced strains among this species. The present work reports on the isolation and characterization of the phage infectious to the type strain of P. carotovorum. The phage Arno 160 is a lytic Podovirus representing a potential new genus of the subfamily Autographivirinae. It recognizes O-polysaccahride of the host strain and depolymerizes it in the process of infection using a rhamnosidase hydrolytic mechanism. Despite the narrow host range of this phage, it is suitable for phage control application.


2014 ◽  
Vol 162 (11-12) ◽  
pp. 712-722 ◽  
Author(s):  
Khaled Elbanna ◽  
Sameh Elnaggar ◽  
Abdelradi Bakeer

2015 ◽  
Vol 82 (1) ◽  
pp. 268-278 ◽  
Author(s):  
Yannick Raoul des Essarts ◽  
Jérémy Cigna ◽  
Angélique Quêtu-Laurent ◽  
Aline Caron ◽  
Euphrasie Munier ◽  
...  

ABSTRACTDevelopment of protection tools targetingDickeyaspecies is an important issue in the potato production. Here, we present the identification and the characterization of novel biocontrol agents. Successive screenings of 10,000 bacterial isolates led us to retain 58 strains that exhibited growth inhibition properties against severalDickeyasp. and/orPectobacteriumsp. pathogens. Most of them belonged to thePseudomonasandBacillusgenera.In vitroassays revealed a fitness decrease of the testedDickeyasp. andPectobacteriumsp. pathogens in the presence of the biocontrol agents. In addition, four independent greenhouse assays performed to evaluate the biocontrol bacteria effect on potato plants artificially contaminated withDickeya dianthicolarevealed that a mix of three biocontrol agents, namely,Pseudomonas putidaPA14H7 andPseudomonas fluorescensPA3G8 and PA4C2, repeatedly decreased the severity of blackleg symptoms as well as the transmission ofD. dianthicolato the tuber progeny. This work highlights the use of a combination of biocontrol strains as a potential strategy to limit the soft rot and blackleg diseases caused byD. dianthicolaon potato plants and tubers.


Sign in / Sign up

Export Citation Format

Share Document