bacillus altitudinis
Recently Published Documents


TOTAL DOCUMENTS

88
(FIVE YEARS 44)

H-INDEX

10
(FIVE YEARS 2)

Author(s):  
Sonam Antil ◽  
Rakesh Kumar ◽  
D. V. Pathak ◽  
Anil Kumar ◽  
Anil Panwar ◽  
...  

Author(s):  
Sanam Islam Khan ◽  
Asaf Zarin ◽  
Safia Ahmed ◽  
Fariha Hasan ◽  
Ali Osman Belduz ◽  
...  

Abstract Lignin is a major by-product of pulp and paper industries, which is resistant to depolymerization due to its heterogeneous structure. Degradation of lignin can be achieved by the use of potential lignin-degrading bacteria. The current study was designed to evaluate the degradation efficiency of newly isolated Bacillus altitudinis SL7 from pulp and paper mill effluent. The degradation efficiency of B. altitudinis SL7 was determined by color reduction, r lignin contents, and ligninolytic activity from degradation medium supplemented with alkali lignin (3 g/L). B. altitudinis SL7 reduced color and lignin contents by 26 and 44%, respectively, on 5th day of the incubation, as evident from the maximum laccase activity. Optimum degradation was observed at 40 °C and pH 8.0. FT-IR spectroscopy and GC-MS analysis confirmed lignin degradation by emergence of the new peaks and identification of low molecular weight compounds in treated samples. The identified compounds such as vanillin, 2-methyoxyhenol, 3-methyl phenol, oxalic acid and ferulic acid suggested the degradation of coniferyl and sinapyl groups of lignin. Degradation efficiency of B. altitudinis SL7 towards high lignin concentration under alkaline pH indicated the potential application of this isolate in biological treatment of the lignin-containing effluents.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Daniel Crespo-Piazuelo ◽  
Peadar G. Lawlor ◽  
Samir Ranjitkar ◽  
Paul Cormican ◽  
Carmen Villodre ◽  
...  

AbstractThe objective was to evaluate the effect of dietary Bacillus altitudinis spore supplementation during day (D)0–28 post-weaning (PW) and/or D29–56 PW compared with antibiotic and zinc oxide (AB + ZnO) supplementation on pig growth and gut microbiota. Eighty piglets were selected at weaning and randomly assigned to one of five dietary treatments: (1) negative control (Con/Con); (2) probiotic spores from D29–56 PW (Con/Pro); (3) probiotic spores from D0–28 PW (Pro/Con); (4) probiotic spores from D0–56 PW (Pro/Pro) and (5) AB + ZnO from D0–28 PW. Overall, compared with the AB + ZnO group, the Pro/Con group had lower body weight, average daily gain and feed intake and the Pro/Pro group tended to have lower daily gain and feed intake. However, none of these parameters differed between any of the probiotic-treated groups and the Con/Con group. Overall, AB + ZnO-supplemented pigs had higher Bacteroidaceae and Prevotellaceae and lower Lactobacillaceae and Spirochaetaceae abundance compared to the Con/Con group, which may help to explain improvements in growth between D15–28 PW. The butyrate-producing genera Agathobacter, Faecalibacterium and Roseburia were more abundant in the Pro/Con group compared with the Con/Con group on D35 PW. Thus, whilst supplementation with B. altitudinis did not enhance pig growth performance, it did have a subtle, albeit potentially beneficial, impact on the intestinal microbiota.


2021 ◽  
Vol 9 (9) ◽  
pp. 1952
Author(s):  
Mudasir A. Dar ◽  
Neeraja P. Dhole ◽  
Rongrong Xie ◽  
Kiran D. Pawar ◽  
Kalim Ullah ◽  
...  

Bioconversion of lignocellulose into renewable energy and commodity products faces a major obstacle of inefficient saccharification due to its recalcitrant structure. In nature, lignocellulose is efficiently degraded by some insects, including termites and beetles, potentially due to the contribution from symbiotic gut bacteria. To this end, the presented investigation reports the isolation and characterization of cellulolytic bacteria from the gut system of red flour beetle, Tribolium castaneum. Out of the 15 isolated bacteria, strain RSP75 showed the highest cellulolytic activities by forming a clearance zone of 28 mm in diameter with a hydrolytic capacity of ~4.7. The MALDI-TOF biotyping and 16S rRNA gene sequencing revealed that the strain RSP75 belongs to Bacillus altitudinis. Among the tested enzymes, B. altitudinis RSP75 showed maximum activity of 63.2 IU/mL extract for xylanase followed by β-glucosidase (47.1 ± 3 IU/mL extract) which were manifold higher than previously reported activities. The highest substrate degradation was achieved with wheat husk and corn cob powder which accounted for 69.2% and 54.5%, respectively. The scanning electron microscopy showed adhesion of the bacterial cells with the substrate which was further substantiated by FTIR analysis that depicted the absence of the characteristic cellulose bands at wave numbers 1247, 1375, and 1735 cm−1 due to hydrolysis by the bacterium. Furthermore, B. altitudinis RSP75 showed co-culturing competence with Saccharomyces cerevisiae for bioethanol production from lignocellulose as revealed by GC-MS analysis. The overall observations signify the gut of T. castaneum as a unique and impressive reservoir to prospect for lignocellulose-degrading bacteria that can have many biotechnological applications, including biofuels and biorefinery.


2021 ◽  
Vol 8 ◽  
Author(s):  
Zhongke Sun ◽  
Zonghao Yue ◽  
Hongzhan Liu ◽  
Keshi Ma ◽  
Chengwei Li

Microbial-assisted biofortification attracted much attention recently due to its sustainable and eco-friendly nature for improving nutrient content in wheat. An endophytic strain Bacillus altitudinis WR10, which showed sophistical regulation of iron (Fe) homeostasis in wheat seedlings, inspired us to test its potential for enhancing Fe biofortification in wheat grain. In this study, assays in vitro indicated that WR10 has versatile plant growth-promoting (PGP) traits and bioinformatic analysis predicted its non-pathogenicity. Two inoculation methods, namely, seed soaking and soil spraying, with 107 cfu/ml WR10 cells were applied once before sowing of wheat (Triticum aestivum L. cv. Zhoumai 36) in the field. After wheat maturation, evaluation of yield and nutrients showed a significant increase in the mean number of kernels per spike (KPS) and the content of total nitrogen (N), potassium (K), and Fe in grains. At the grain filling stage, the abundance of Bacillus spp. and the content of N, K, and Fe in the root, the stem, and the leaf were also increased in nearly all tissues, except Fe in the stem and the leaf. Further correlation analysis revealed a positive relationship between the total abundance of Bacillus spp. and the content of N, K, and Fe in grains. Seed staining confirmed the enhanced accumulation of Fe, especially in the embryo and the endosperm. Finally, using a hydroponic coculture model, qPCR quantification indicated effective colonization, internalization, translocation, and replication of strain WR10 in wheat within 48 h. Collectively, strain WR10 assisted successful Fe biofortification in wheat in the field, laying a foundation for further large-scale investigation of its applicability and effectiveness.


Agronomy ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1344
Author(s):  
Naima Lemjiber ◽  
Khalid Naamani ◽  
Annabelle Merieau ◽  
Abdelhi Dihazi ◽  
Nawal Zhar ◽  
...  

Bacterial burn is one of the major diseases affecting pear trees worldwide, with serious impacts on producers and economy. In Morocco, several pear trees (Pyrus communis) have shown leaf burns since 2015. To characterize the causal agent of this disease, we isolated fourteen bacterial strains from different parts of symptomatic pear trees (leaves, shoots, fruits and flowers) that were tested in planta for their pathogenicity on Louise bonne and Williams cultivars. The results showed necrotic lesions with a significant severity range from 47.63 to 57.77% on leaves of the Louise bonne cultivar inoculated with isolate B10, while the other bacterial isolates did not induce any disease symptom. 16S rRNA gene sequencing did not allow robust taxonomic discrimination of the incriminated isolate. Thus, we conducted whole-genome sequencing (WGS) and phylogenetic analyzes based on gyrA, gyrB and cdaA gene sequences, indicating that this isolate belongs to the Bacillus altitudinis species. This taxonomic classification was further confirmed by the Average Nucleotide Identity (ANI) and the in silico DNA-DNA hybridization (isDDH) analyzes compared to sixty-five Bacillus spp. type strains. The genome was mined for genes encoding carbohydrate-active enzymes (CAZymes) known to play a role in the vegetal tissue degradation. 177 candidates with functions that may support the in planta phytopathogenicity results were identified. To the best of our knowledge, this is the first data reporting B. altitudinis as agent of leaf burn in P. communis in Morocco. Our dataset will improve our knowledge on spread and pathogenicity of B. altitudinis genotypes that appears as emergent phytopathogenic agent, unveiling virulence factors and their genomic location (i.e., within genomic islands or the accessory genome) to induce trees disease.


2021 ◽  
Vol 13 (13) ◽  
pp. 7353
Author(s):  
Zarka Babar ◽  
Maryam Khan ◽  
Ghayoor Abbas Chotana ◽  
Ghulam Murtaza ◽  
Saba Shamim

The incessant pervasiveness of heavy metals in the environment is one of the precursory factors of pollution. This research study was endeavored upon to investigate the bioremediation potential of a nickel (Ni)-resistant bacterial isolate, identified as Bacillus altitudinis MT422188, whose optimum growth parameters were demonstrated at pH 7, temperature 32 °C, and 1 mM phosphate. Minimal Inhibitory Concentration (MIC) and EC50 for Ni were observed to be 20 and 11.5 mM, respectively, whereas the cross heavy-metal resistance was discerned as Cu2+ (25 mM) > Zn2+ (15 mM) > Cr6+ (10 mM) > Pb2+ (5 mM) > Co2+ (8 mM) > Cd2+ (3 mM) > Hg2+ (0 mM). Ni biosorption studies by live and heat-killed bacterial cells were suggestive of Ni uptake being facilitated by an ATP-independent efflux system. A pilot-scale study displayed the effective removal of Ni (70 mg/L and 85 mg/L) at 4- and 8-day intervals, respectively. Moreover, chemotaxis and motility assays indicated the role of Ni as a chemoattractant for bacterial cells. The presence of Ni reduced the GR (0.001 ± 0.003 Ug−1FW), POX (0.001 ± 0.001 Ug−1FW), and SOD (0.091 ± 0.003 Ug−1FW) activity, whereas Sodium dodecyl sulphate—Polyacrylamide gel electrophoresis (SDS-PAGE) revealed the presence of metallothionein (60 kDa). Kinetic and isotherm studies suggested a pseudo second-order and Freundlich model to be better fitted for our study. The thermodynamic parameters (∆H° = 3.0436 kJ/mol, ∆S° = 0.0224 kJ/mol/K) suggested the process to be endothermic, spontaneous, and favorable in nature. FTIR analysis elucidated the interaction of hydroxyl and carboxyl groups with Ni. Scanning Electron Microscopy (SEM) and Energy Dispersive X-Ray Spectroscopy (EDS) demonstrated changes in the morphological and elemental composition of the bacterial cells, which affirmed their interaction with Ni during biosorption. In summary, our study concludes the efficient role of Bacillus altitudinis MT422188 in removing Ni from polluted industrial effluents.


2021 ◽  
Vol 12 ◽  
Author(s):  
Dening Zhang ◽  
Hongli Xu ◽  
Jingyao Gao ◽  
Roxana Portieles ◽  
Lihua Du ◽  
...  

The identification and use of endophytic bacteria capable of triggering plant growth is an important aim in sustainable agriculture. In nature, plants live in alliance with multiple plant growth-promoting endophytic microorganisms. In the current study, we isolated and identified a new endophytic bacterium from a wild plant species Glyceria chinensis (Keng). The bacterium was designated as a Bacillus altitudinis strain using 16S rDNA sequencing. The endophytic B. altitudinis had a notable influence on plant growth. The results of our assays revealed that the endophytic B. altitudinis raised the growth of different plant species. Remarkably, we found transcriptional changes in plants treated with the bacterium. Genes such as maturase K, tetratricopeptide repeat-like superfamily protein, LOB domain-containing protein, and BTB/POZ/TAZ domain-containing protein were highly expressed. In addition, we identified for the first time an induction in the endophytic bacterium of the major facilitator superfamily transporter and DNA gyrase subunit B genes during interaction with the plant. These new findings show that endophytic B. altitudinis could be used as a favourable candidate source to enhance plant growth in sustainable agriculture.


2021 ◽  
pp. 1-21
Author(s):  
Maryam Khan ◽  
Munazza Ijaz ◽  
Ghayoor Abbas Chotana ◽  
Ghulam Murtaza ◽  
Arif Malik ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document