PV-based EV charging station with vehicle-to-grid services for business premises

2018 ◽  
Author(s):  
Md. Shariful Islam
2020 ◽  
Vol 10 (18) ◽  
pp. 6500
Author(s):  
Dian Wang ◽  
Manuela Sechilariu ◽  
Fabrice Locment

The increase in the number of electric vehicles (EVs) has led to an increase in power demand from the public grid; hence, a photovoltaic based charging station for an electric vehicle (EV) can participate to solve some peak power problems. On the other hand, vehicle-to-grid technology is designed and applied to provide ancillary services to the grid during the peak periods, considering the duality of EV battery “load-source”. In this paper, a dynamic searching peak and valley algorithm, based on energy management, is proposed for an EV charging station to mitigate the impact on the public grid, while reducing the energy cost of the public grid. The proposed searching peak and valley algorithm can determine the optimal charging/discharging start time of EV in consideration of the initial state of charge, charging modes, arrival time, departure time, and the peak periods. Simulation results demonstrate the proposed searching peak and valley algorithm’s effectiveness, which can guarantee the balance of the public grid, whilst meanwhile satisfying the charging demand of EV users, and most importantly, reduce the public grid energy cost.


2022 ◽  
pp. 195-207
Author(s):  
Furkan Ahmad ◽  
Essam A. Al-Ammar ◽  
Ibrahim Alsaidan

State-of-the-art research to solve the grid congestion due to EVs is focused on smart charging and using (centralized, de-centralized, vehicle-to-grid) stationery energy storage as a buffer between times of peak and off-peak demand. On the other hand, the charging of EVs introduces new challenges and opportunities. This can prove to be beneficial for the EV aggregator as well as to consumers, regarding the economy. Also, EV as distributed storage makes the grid more steady, secure, and resilient by regulating frequency and the spinning reserve as backup power. However, the charging time and range anxiety lead to peak challenges for the use of EVs. In this chapter battery swapping station (BSS) as solution to the EV charging station is discussed.


2019 ◽  
Vol 2 (1) ◽  
Author(s):  
Rob Shipman ◽  
Sophie Naylor ◽  
James Pinchin ◽  
Rebecca Gough ◽  
Mark Gillott

AbstractThe electric vehicles (EV) market is projected to continue its rapid growth, which will profoundly impact the demand on the electricity network requiring costly network reinforcements unless EV charging is properly managed. However, as well as importing electricity from the grid, EVs also have the potential to export electricity through vehicle-to-grid (V2G) technology, which can help balance supply and demand and stabilise the grid through participation in flexibility markets. Such a scenario requires a population of EVs to be pooled to provide a larger storage resource. Key to doing so effectively however is knowledge of the users, as they ultimately determine the availability of a vehicle. In this paper we introduce a machine learning model that aims to learn both a) the criteria influencing users when they decided whether to make their vehicle available and b) their reliability in following through on those decisions, with a view to more accurately predicting total available capacity from the pool of vehicles at a given time. Using a series of simplified simulations, we demonstrate that the learning model is able to adapt to both these factors, which allows the required capacity of a market event to be satisfied more reliably and using a smaller number of vehicles than would otherwise be the case. This in turn has the potential to support participation in larger and more numerous market events for the same user base and use of the technology for smaller groups of users such as individual communities.


The paper investigates how we can utilize the renewable source of energy (i.e. solar energy) to charge an EV. Transportation plays a vital role in day to day life. In India, pollution is increasing day by day. Carbon footprints for India are alarming and it can only be reduced with use of renewable energy uses. India’s more than 3/4th of fuel consumption is met by imports from other countries. To boost EVs in Indian market, Solar charging is best method for charging because of two reasons, first no carbon footprints and other is no dependency on grid for power meet. Increasing charging station will be the foremost need of an EV user and it can be employed at various places like- offices, malls hospitals etc. This paper presents an idea about how can solar energy can be used for charging an EV and also gives a comparison chart for EV user and Non-EV user. In addition, a survey was conducted to provide people’s opinion on solar EV charging station. Vehicle to Grid (V2G) method will show power can be supplied to grid from a charged EV. At last its advantages for environment and society are concluded.


Systems ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 19
Author(s):  
Mahdi Boucetta ◽  
Niamat Ullah Ibne Hossain ◽  
Raed Jaradat ◽  
Charles Keating ◽  
Siham Tazzit ◽  
...  

Exponential technological-based growth in industrialization and urbanization, and the ease of mobility that modern motorization offers have significantly transformed social structures and living standards. As a result, electric vehicles (EVs) have gained widespread popularity as a mode of sustainable transport. The increasing demand for of electric vehicles (EVs) has reduced the some of the environmental issues and urban space requirements for parking and road usage. The current body of EV literature is replete with different optimization and empirical approaches pertaining to the design and analysis of the EV ecosystem; however, probing the EV ecosystem from a management perspective has not been analyzed. To address this gap, this paper develops a systems-based framework to offer rigorous design and analysis of the EV ecosystem, with a focus on charging station location problems. The study framework includes: (1) examination of the EV charging station location problem through the lens of a systems perspective; (2) a systems view of EV ecosystem structure; and (3) development of a reference model for EV charging stations by adopting the viable system model. The paper concludes with the methodological implications and utility of the reference model to offer managerial insights for practitioners and stakeholders.


Author(s):  
Rata Mihai ◽  
Rata Gabriela ◽  
Filote Constantin ◽  
Afanasov Ciprian ◽  
Raboaca Maria Simona
Keyword(s):  

Solar Energy ◽  
2020 ◽  
Vol 205 ◽  
pp. 170-182
Author(s):  
Ahmed A.S. Mohamed ◽  
Ahmed El-Sayed ◽  
Hamid Metwally ◽  
Sameh I. Selem

Sign in / Sign up

Export Citation Format

Share Document