scholarly journals PV-Powered Charging Station for Electric Vehicles: Power Management with Integrated V2G

2020 ◽  
Vol 10 (18) ◽  
pp. 6500
Author(s):  
Dian Wang ◽  
Manuela Sechilariu ◽  
Fabrice Locment

The increase in the number of electric vehicles (EVs) has led to an increase in power demand from the public grid; hence, a photovoltaic based charging station for an electric vehicle (EV) can participate to solve some peak power problems. On the other hand, vehicle-to-grid technology is designed and applied to provide ancillary services to the grid during the peak periods, considering the duality of EV battery “load-source”. In this paper, a dynamic searching peak and valley algorithm, based on energy management, is proposed for an EV charging station to mitigate the impact on the public grid, while reducing the energy cost of the public grid. The proposed searching peak and valley algorithm can determine the optimal charging/discharging start time of EV in consideration of the initial state of charge, charging modes, arrival time, departure time, and the peak periods. Simulation results demonstrate the proposed searching peak and valley algorithm’s effectiveness, which can guarantee the balance of the public grid, whilst meanwhile satisfying the charging demand of EV users, and most importantly, reduce the public grid energy cost.

2014 ◽  
Vol 953-954 ◽  
pp. 1367-1371
Author(s):  
Dong Hua Wang ◽  
Cheng Xiong Mao ◽  
Min Wei Wang ◽  
Ji Ming Lu ◽  
Hua Fan ◽  
...  

The plug-in electric vehicles (PEVs) would exert inevitable impact on distribution system operation due to the spatial and temporal stochastic nature of the charging load. Based on the probability distributions of battery charging start time and the initial state-of-charge (SOC), the spatial and temporal charging loads of PEVs are analyzed on load nature and charging behaviors among different functional distribution areas. Taking IEEE 33-bus distribution system as an example, the Monte Carlo method is adopted to simulate charging load under different charging strategies and charging places for assess the impact on network loss and nodal voltage using standard load flow calculations. The results show that the choice of control strategies can improve the impacts of PEVs charging on distribution grid; a well-developed public charging infrastructure could reduce the stress on the residential distribution systems; optimal assignment of PEVs charging in residential area and industrial or commercial areas would provide a reference for charging infrastructure construction.


Systems ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 6
Author(s):  
Arun Kumar Kalakanti ◽  
Shrisha Rao

Charging station (CS) planning for electric vehicles (EVs) for a region has become an important concern for urban planners and the public alike to improve the adoption of EVs. Two major problems comprising this research area are: (i) the EV charging station placement (EVCSP) problem, and (ii) the CS need estimation problem for a region. In this work, different explainable solutions based on machine learning (ML) and simulation were investigated by incorporating quantitative and qualitative metrics. The solutions were compared with traditional approaches using a real CS area of Austin and a greenfield area of Bengaluru. For EVCSP, a different class of clustering solutions, i.e., mean-based, density-based, spectrum- or eigenvalues-based, and Gaussian distribution were evaluated. Different perspectives, such as the urban planner perspective, i.e., the clustering efficiency, and the EV owner perspective, i.e., an acceptable distance to the nearest CS, were considered. For the CS need estimation, ML solutions based on quadratic regression and simulations were evaluated. Using our CS planning methods urban planners can make better CS placement decisions and can estimate CS needs for the present and the future.


Systems ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 19
Author(s):  
Mahdi Boucetta ◽  
Niamat Ullah Ibne Hossain ◽  
Raed Jaradat ◽  
Charles Keating ◽  
Siham Tazzit ◽  
...  

Exponential technological-based growth in industrialization and urbanization, and the ease of mobility that modern motorization offers have significantly transformed social structures and living standards. As a result, electric vehicles (EVs) have gained widespread popularity as a mode of sustainable transport. The increasing demand for of electric vehicles (EVs) has reduced the some of the environmental issues and urban space requirements for parking and road usage. The current body of EV literature is replete with different optimization and empirical approaches pertaining to the design and analysis of the EV ecosystem; however, probing the EV ecosystem from a management perspective has not been analyzed. To address this gap, this paper develops a systems-based framework to offer rigorous design and analysis of the EV ecosystem, with a focus on charging station location problems. The study framework includes: (1) examination of the EV charging station location problem through the lens of a systems perspective; (2) a systems view of EV ecosystem structure; and (3) development of a reference model for EV charging stations by adopting the viable system model. The paper concludes with the methodological implications and utility of the reference model to offer managerial insights for practitioners and stakeholders.


Proceedings ◽  
2020 ◽  
Vol 65 (1) ◽  
pp. 2
Author(s):  
Elisavet Koutsi ◽  
Sotirios Deligiannis ◽  
Georgia Athanasiadou ◽  
Dimitra Zarbouti ◽  
George Tsoulos

During the last few decades, electric vehicles (EVs) have emerged as a promising sustainable alternative to traditional fuel cars. The work presented here is carried out in the context of the Horizon 2020 project MERLON and targets the impact of EVs on electrical grid load profiles, while considering both grid-to-vehicle (G2V) and vehicle-to-grid (V2G) operation modes. Three different charging policies are considered: the uncontrolled charging, which acts as a reference scenario, and two strategies that fall under the umbrella of individual charging policies based on price incentive strategies. Electricity prices along with the EV user preferences are taken into account for both charging (G2V) and discharging (V2G) operations, allowing for more realistic scenarios to be considered.


2019 ◽  
pp. 39-47
Author(s):  
Zoltán Jakó ◽  
Ádám Knapp ◽  
Nadim El Sayed

Vehicle to grid (V2G) communication for electric vehicles and their charging points is already well established by the ISO 15118 standard. The standard allows vehicles to communicate with the charging station using the power cable, i.e. a wired link, but it is improved to enable wireless (WLAN) links as well. This paper aims to provide an implementation accomplishes a wireless authentication solution (WAS). With that the electric vehicles can establish V2G connection when approaching the charging pool, then identify and authenticate the driver and/or the vehicle. Furthermore, the paper presents a TTCN-3 based validation and verification (V&V) framework in order to test the conformance of the prototype implementation against the standard.


Energies ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4682 ◽  
Author(s):  
Grzegorz Sierpiński ◽  
Marcin Staniek ◽  
Marcin Jacek Kłos

Development of electromobility in urban areas requires an appropriate level of vehicle charging infrastructure. Numerous methods for siting of charging stations have been developed to date, and they appear to be delivering diverse outcomes for the same area, which is why local authorities face the problem of choosing the right station layout. The solution proposed in this article is to use a travel planner to evaluate the distribution of charging stations over the area of a metropolis. The decision making support is achieved by determining optimal travel routes for electric vehicles according to their initial state of charge for the three selected station siting methods. The evaluation focused on the following three aspects: (1) number of travels that cannot be made (due to the lack of a charging station at a certain distance around the start point), (2) extension of the travel caused by the need to recharge the vehicle on-route, and (3) additional energy consumption by electric vehicles required to reach the charging station (necessity of departing from the optimal route). An analysis of the results has made it possible to determine a solution which is superior to others. For the case study analysed in the paper, i.e., the territory of the Metropolis of Upper Silesia and Dabrową Basin (Górnośląsko-Zagłębiowska Metropolia, GZM), the distribution of charging stations established in line with method I has returned the best results. What the method in question also makes possible is to indicate a safe minimum energy reserve to complete the travel by eliminating situations of unexpected vehicle immobilisation due to on-route energy depletion and by minimising the phenomenon referred to as range anxiety.


Energies ◽  
2019 ◽  
Vol 12 (22) ◽  
pp. 4240 ◽  
Author(s):  
Khairy Sayed ◽  
Ahmed G. Abo-Khalil ◽  
Ali S. Alghamdi

This paper introduces an energy management and control method for DC microgrid supplying electric vehicles (EV) charging station. An Energy Management System (EMS) is developed to manage and control power flow from renewable energy sources to EVs through DC microgrid. An integrated approach for controlling DC microgrid based charging station powered by intermittent renewable energies. A wind turbine (WT) and solar photovoltaic (PV) arrays are integrated into the studied DC microgrid to replace energy from fossil fuel and decrease pollution from carbon emissions. Due to the intermittency of solar and wind generation, the output powers of PV and WT are not guaranteed. For this reason, the capacities of WT, solar PV panels, and the battery system are considered decision parameters to be optimized. The optimized design of the renewable energy system is done to ensure sufficient electricity supply to the EV charging station. Moreover, various renewable energy technologies for supplying EV charging stations to improve their performance are investigated. To evaluate the performance of the used control strategies, simulation is carried out in MATLAB/SIMULINK.


Proceedings ◽  
2018 ◽  
Vol 2 (23) ◽  
pp. 1504
Author(s):  
Aitor Fernández-Jiménez ◽  
Daniel Fernández-de la Cruz ◽  
Jesús Ruiz-Torres ◽  
Jose Luis Perrino-Blanco ◽  
Raúl Jimeno-Almeida

The implantation of floating platforms for the generation of electricity from tidal currents is possible due to the development of new hydrokinetic microturbines. This article presents an analysis of the situation in which the exploitation of tidal currents is nowadays, the state of art of the existing technologies and the principal projects that are currently underway. In addition, it focuses on the different aspects and criteria to consider for building one of these plants. Finally, an installation by floating platform is proposed to supply electricity to a charging station for electric vehicles near the Nalon river (Spain) with a description of it and an analysis of feasibility.


2011 ◽  
Vol 347-353 ◽  
pp. 3902-3907
Author(s):  
Liang Liang Chen ◽  
Ming Wu ◽  
Hao Zhang ◽  
Xiao Hua Ding ◽  
Jin Da Zhu

The energy supply infrastructures construction is the prerequisite and basis for the large-scale promotion and application of electric vehicles (EVs). The characteristics and current construction situation of several EV power supply infrastructures in China such as AC charging spot, charging station and battery swap station are introduced first, and the characteristics of time combination mode and space combination mode for the construction of EV charging facilities are also discussed. Meanwhile, the features of operation mode for EV power supply infrastructures in different developing stage of are analyzed, and the main bodies for EV power supply infrastructures construction are also introduced.


2021 ◽  
Vol 12 (4) ◽  
pp. 218
Author(s):  
Mohammad A. Obeidat ◽  
Abdulaziz Almutairi ◽  
Saeed Alyami ◽  
Ruia Dahoud ◽  
Ayman M. Mansour ◽  
...  

In recent years, air pollution and climate change issues have pushed people worldwide to switch to using electric vehicles (EVs) instead of gas-driven vehicles. Unfortunately, most distribution system facilities are neither designed nor well prepared to accommodate these new types of loads, which are characterized by random and uncertain behavior. Therefore, this paper provides a comprehensive investigation of EVs’ effect on a realistic distribution system. It provides a technical evaluation and analysis of a real distribution system’s load and voltage drop in the presence of EVs under different charging strategies. In addition, this investigation presents a new methodology for managing EV loads under a dynamic response strategy in response to the distribution system’s critical hours. The proposed methodology is applied to a real distribution network, using the Monte Carlo method and the CYME program. Random driver behavior is taken into account in addition to various factors that affect EV load parameters. Overall, the results show that the distribution system is significantly affected by the addition of EV charging loads, which create a severe risk to feeder limits and voltage drop. However, a significant reduction in the impact of EVs can be achieved if a proper dynamic demand response programme is implemented. We hope that the outcomes of this investigation will provide decision-makers and planners with prior knowledge about the expected impact of using EVs and, consequently, enable them to take the proper actions needed to manage such load.


Sign in / Sign up

Export Citation Format

Share Document