Cohort-Specific Optimization of Models Predicting Preclinical Alzheimer’s Disease, to Enhance Screening Performance in the Middle of Preclinical Alzheimer’s Disease Clinical Studies

Author(s):  
K. Sato ◽  
T. Mano ◽  
R. Ihara ◽  
K. Suzuki ◽  
Y. Niimi ◽  
...  

BACKGROUND: Models that can predict brain amyloid beta (Aβ) status more accurately have been desired to identify participants for clinical trials of preclinical Alzheimer’s disease (AD). However, potential heterogeneity between different cohorts and the limited cohort size have been the reasons preventing the development of reliable models applicable to the Asian population, including Japan. Objectives: We aim to propose a novel approach to predict preclinical AD while overcoming these constraints, by building models specifically optimized for ADNI or for J-ADNI, based on the larger samples from A4 study data. Design & Participants: This is a retrospective study including cognitive normal participants (CDR-global = 0) from A4 study, Alzheimer Disease Neuroimaging Initiative (ADNI), and Japanese-ADNI (J-ADNI) cohorts. Measurements: The model is made up of age, sex, education years, history of AD, Clinical Dementia Rating-Sum of Boxes, Preclinical Alzheimer Cognitive Composite score, and APOE genotype, to predict the degree of amyloid accumulation in amyloid PET as Standardized Uptake Value ratio (SUVr). The model was at first built based on A4 data, and we can choose at which SUVr threshold configuration the A4-based model may achieve the best performance area under the curve (AUC) when applied to the random-split half ADNI or J-ADNI subset. We then evaluated whether the selected model may also achieve better performance in the remaining ADNI or J-ADNI subsets. Result: When compared to the results without optimization, this procedure showed efficacy of AUC improvement of up to approximately 0.10 when applied to the models “without APOE;” the degree of AUC improvement was larger in the ADNI cohort than in the J-ADNI cohort. Conclusions: The obtained AUC had improved mildly when compared to the AUC in case of literature-based predetermined SUVr threshold configuration. This means our procedure allowed us to predict preclinical AD among ADNI or J-ADNI second-half samples with slightly better predictive performance. Our optimizing method may be practically useful in the middle of the ongoing clinical study of preclinical AD, as a screening to further increase the prior probability of preclinical AD before amyloid testing.

2018 ◽  
Vol 103 (7) ◽  
pp. 971-975 ◽  
Author(s):  
Gregory P Van Stavern ◽  
Ling Bei ◽  
Ying-Bo Shui ◽  
Julie Huecker ◽  
Mae Gordon

Background/aimsWe wished to determine whether the pupillary light reaction can differentiate preclinical Alzheimer’s disease (AD) subjects from normal ageing controls. We performed a prospective study evaluating the pupillary light reaction in a cohort of well-characterised subjects with preclinical AD versus normal ageing controls.MethodsWe recruited 57 subjects from our institution’s Memory and Aging Project, part of our Alzheimer’s Disease Research Center. All subjects completed PET-PiB imaging, cerebrospinal fluid analysis and at least 1 neuropsychiatric assessment after their baseline assessment. All participants were assigned a clinical dementia rating and underwent a complete neuro-ophthalmic examination. Participants were divided into a dementia biomarker+ (preclinical AD) and biomarker– (normal ageing) group based on preclinical risk for Alzheimer’s dementia. Pupillometry measurements were performed by using the NeurOptics PLR-200 Pupillometer.ResultsA total of 57 subjects were recruited with 24 dementia biomarker+ and 33 dementia biomarker- individuals. A variety of pupil flash response (PLR) parameters were assessed. Comparisons between groups were analysed using generalised estimating equations. None of the pupillary parameters showed a significant difference between groups.ConclusionsWe found no significant differences in PLR between preclinical AD subjects and normal ageing controls. This suggests that the disease effect on the PLR may be small and difficult to detect at the earliest stages of the disease. Future studies could include larger sample size and chromatic pupillometry.


2020 ◽  
pp. 1-6
Author(s):  
Ganesh M. Babulal ◽  
Ann Johnson ◽  
Anne M. Fagan ◽  
John C. Morris ◽  
Catherine M. Roe

We examined whether driving behavior can predict preclinical Alzheimer’s disease (AD). Data from 131 cognitively normal older adults with cerebrospinal fluid (CSF) and/or positron emission tomography (PET) biomarkers were examined with naturalistic driving behavior. Receiver operating characteristic curves were used to predict the highest 10%, 25%, and 50% of values for CSF tau/Aβ42, ptau181/Aβ42, or amyloid PET. Six in vivo driving variables alone yielded area under the curves (AUC) from 0.64–0.82. Addition of age, Apolipoprotein ɛ4, and neuropsychological measures to the models improved the AUC (0.81 to 0.90). Driving can be used as novel neurobehavioral marker to identify presence of preclinical AD.


2016 ◽  
Vol 22 (10) ◽  
pp. 978-990 ◽  
Author(s):  
Emily C. Edmonds ◽  
Katherine J. Bangen ◽  
Lisa Delano-Wood ◽  
Daniel A. Nation ◽  
Ansgar J. Furst ◽  
...  

AbstractObjectives: We examined florbetapir positron emission tomography (PET) amyloid scans across stages of preclinical Alzheimer’s disease (AD) in cortical, allocortical, and subcortical regions. Stages were characterized using empirically defined methods. Methods: A total of 312 cognitively normal Alzheimer’s Disease Neuroimaging Initiative participants completed a neuropsychological assessment and florbetapir PET scan. Participants were classified into stages of preclinical AD using (1) a novel approach based on the number of abnormal biomarkers/cognitive markers each individual possessed, and (2) National Institute on Aging and the Alzheimer’s Association (NIA-AA) criteria. Preclinical AD groups were compared to one another and to a mild cognitive impairment (MCI) sample on florbetapir standardized uptake value ratios (SUVRs) in cortical and allocortical/subcortical regions of interest (ROIs). Results: Amyloid deposition increased across stages of preclinical AD in all cortical ROIs, with SUVRs in the later stages reaching levels seen in MCI. Several subcortical areas showed a pattern of results similar to the cortical regions; however, SUVRs in the hippocampus, pallidum, and thalamus largely did not differ across stages of preclinical AD. Conclusions: Substantial amyloid accumulation in cortical areas has already occurred before one meets criteria for a clinical diagnosis. Potential explanations for the unexpected pattern of results in some allocortical/subcortical ROIs include lack of correspondence between (1) cerebrospinal fluid and florbetapir PET measures of amyloid, or between (2) subcortical florbetapir PET SUVRs and underlying neuropathology. Findings support the utility of our novel method for staging preclinical AD. By combining imaging biomarkers with detailed cognitive assessment to better characterize preclinical AD, we can advance our understanding of who is at risk for future progression. (JINS, 2016, 22, 978–990)


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Soo Hyun Cho ◽  
Sookyoung Woo ◽  
Changsoo Kim ◽  
Hee Jin Kim ◽  
Hyemin Jang ◽  
...  

AbstractTo characterize the course of Alzheimer’s disease (AD) over a longer time interval, we aimed to construct a disease course model for the entire span of the disease using two separate cohorts ranging from preclinical AD to AD dementia. We modelled the progression course of 436 patients with AD continuum and investigated the effects of apolipoprotein E ε4 (APOE ε4) and sex on disease progression. To develop a model of progression from preclinical AD to AD dementia, we estimated Alzheimer’s Disease Assessment Scale-Cognitive Subscale 13 (ADAS-cog 13) scores. When calculated as the median of ADAS-cog 13 scores for each cohort, the estimated time from preclinical AD to MCI due to AD was 7.8 years and preclinical AD to AD dementia was 15.2 years. ADAS-cog 13 scores deteriorated most rapidly in women APOE ε4 carriers and most slowly in men APOE ε4 non-carriers (p < 0.001). Our results suggest that disease progression modelling from preclinical AD to AD dementia may help clinicians to estimate where patients are in the disease course and provide information on variation in the disease course by sex and APOE ε4 status.


2021 ◽  
Vol 79 (1) ◽  
pp. 225-235
Author(s):  
Maya Arvidsson Rådestig ◽  
Johan Skoog ◽  
Henrik Zetterberg ◽  
Jürgen Kern ◽  
Anna Zettergren ◽  
...  

Background: We have previously shown that older adults with preclinical Alzheimer’s disease (AD) pathology in cerebrospinal fluid (CSF) had slightly worse performance in Mini-Mental State Examination (MMSE) than participants without preclinical AD pathology. Objective: We therefore aimed to compare performance on neurocognitive tests in a population-based sample of 70-year-olds with and without CSF AD pathology. Methods: The sample was derived from the population-based Gothenburg H70 Birth Cohort Studies in Sweden. Participants (n = 316, 70 years old) underwent comprehensive cognitive examinations, and CSF Aβ-42, Aβ-40, T-tau, and P-tau concentrations were measured. Participants were classified according to the ATN system, and according to their Clinical Dementia Rating (CDR) score. Cognitive performance was examined in the CSF amyloid, tau, and neurodegeneration (ATN) categories. Results: Among participants with CDR 0 (n = 259), those with amyloid (A+) and/or tau pathology (T+, N+) showed similar performance on most cognitive tests compared to participants with A-T-N-. Participants with A-T-N+ performed worse in memory (Supra span (p = 0.003), object Delayed (p = 0.042) and Immediate recall (p = 0.033)). Among participants with CDR 0.5 (n = 57), those with amyloid pathology (A+) scored worse in category fluency (p = 0.003). Conclusion: Cognitively normal participants with amyloid and/or tau pathology performed similarly to those without any biomarker evidence of preclinical AD in most cognitive domains, with the exception of slightly poorer memory performance in A-T-N+. Our study suggests that preclinical AD biomarkers are altered before cognitive decline.


2021 ◽  
pp. 1-10
Author(s):  
Douglas Barthold ◽  
Laura E. Gibbons ◽  
Zachary A. Marcum ◽  
Shelly L. Gray ◽  
C. Dirk Keene ◽  
...  

Background: Diabetes is a risk factor for Alzheimer’s disease and related dementias (ADRD). Epidemiologic evidence shows an association between diabetes medications and ADRD risk; cell and mouse models show diabetes medication association with AD-related neuropathologic change (ADNC). Objective: This hypothesis-generating analysis aimed to describe autopsy-measured ADNC for individuals who used diabetes medications. Methods: Descriptive analysis of ADNC for Adult Changes in Thought (ACT) Study autopsy cohort who used diabetes medications, including sulfonylureas, insulin, and biguanides; total N = 118. ADNC included amyloid plaque distribution (Thal phasing), neurofibrillary tangle (NFT) distribution (Braak stage), and cortical neuritic plaque density (CERAD score). We also examined quantitative measures of ADNC using the means of standardized Histelide measures of cortical PHF-tau and Aβ 1–42. Adjusted analyses control for age at death, sex, education, APOE genotype, and diabetes complication severity index. Results: Adjusted analyses showed no significant association between any drug class and traditional neuropathologic measures compared to nonusers of that class. In adjusted Histelide analyses, any insulin use was associated with lower mean levels of Aβ 1–42 (–0.57 (CI: –1.12, –0.02)) compared to nonusers. Five years of sulfonylureas and of biguanides use was associated with lower levels of Aβ 1–42 compared to nonusers (–0.15 (CI: –0.28, –0.02), –0.31 (CI: –0.54, –0.07), respectively). Conclusion: Some evidence exists that diabetes medications are associated with lower levels of Aβ 1–42, but not traditional measures of neuropathology. Future studies are needed in larger samples to build understanding of the mechanisms between diabetes, its medications, and ADRD, and to potentially repurpose existing medications for prevention or delay of ADRD.


2019 ◽  
Vol 34 (5) ◽  
pp. 314-321
Author(s):  
Miwako Takahashi ◽  
Tomoko Tada ◽  
Tomomi Nakamura ◽  
Keitaro Koyama ◽  
Toshimitsu Momose

This study aimed to assess efficacy and limitations of regional cerebral blood flow imaging using single-photon emission computed tomography (rCBF-SPECT) in the diagnosis of Alzheimer’s disease (AD) with amyloid-positron emission tomography (amyloid-PET). Thirteen patients, who underwent both rCBF-SPECT and amyloid-PET after clinical diagnosis of AD or mild cognitive impairment, were retrospectively identified. The rCBF-SPECTs were classified into 4 grades, from typical AD pattern to no AD pattern of hypoperfusion; amyloid-beta (Aβ) positivity was assessed by amyloid-PET. Four patients were categorized into a typical AD pattern on rCBF-SPECT, and all were Aβ+. The other 9 patients did not exhibit a typical AD pattern; however, 4 were Aβ+. The Mini-Mental State Examination score and Clinical Dementia Rating scale were not significantly different between Aβ+ and Aβ– patients. A typical AD pattern on rCBF-SPECT can reflect Aβ+; however, if not, rCBF-SPECT has a limitation to predict amyloid pathology.


2015 ◽  
Vol 11 (7S_Part_2) ◽  
pp. P105-P105
Author(s):  
Aaron P. Schultz ◽  
Elizabeth C. Mormino ◽  
Jasmeer P. Chhatwal ◽  
Molly LaPoint ◽  
Alex S. Dagley ◽  
...  

2014 ◽  
Vol 10 ◽  
pp. P429-P430
Author(s):  
Yen Ying Lim ◽  
Victor L. Villemagne ◽  
Robert H. Pietrzak ◽  
Peter J. Snyder ◽  
David Ames ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document