scholarly journals Cuspal deflection of directly or indirectly restored teeth

2013 ◽  
Vol 16 (4) ◽  
pp. 34
Author(s):  
Daniel Maranha da Rocha ◽  
João Maurício Ferraz da Silva ◽  
Liliana Gressler May ◽  
Maria Amélia Máximo Araújo ◽  
Rebeca Di Nicoló ◽  
...  

<p><strong>Objective: </strong>The aim of this study was to evaluatethe cuspal deflection of teeth restored directlyand indirectly. <strong>Material and Methods: </strong>Fortysound maxillary premolar teeth were restoredwith composite and different base materials. Widemesial-occlusal-distal cavity preparations wereperformed, with isthmus width of one third of thedistance between the cuspal tips, 3 mm occlusaland a 5 mm interproximal preparation height. Theteeth were divided into 4 groups (n = 10), accordingto the restoration type: G1) GIC-DCR (1 mm glassionomer cement base and direct restoration usingnanoparticulate composite); G2) FL-DCR (1 mm baseof flowable composite resin and direct restorationusing nanoparticulate composite); G3) GIC-ICR(1 mm glass ionomer cement base and indirectrestoration using nanoparticulate composite GICbase); G4) FL-ICR (1 mm base of flowable compositeresin and indirect restoration using nanoparticulatecomposite). The specimens were submitted tocompressive load of 50 N on the buccal and lingualcusps, in a universal testing machine. The lingualcusp microstrain (με) measurements were executedby strain gauges. <strong>Results: </strong>The Kruskal-Wallis (5%)test was used and showed there were no significantdifferences among the microstrain values for the fourstudy groups (G1 = 1250; G2 = 1075; G3 = 1279;G4 = 937). <strong>Conclusion: </strong>It could be concluded thatthe restorative techniques and the bases employeddid not show any influences in cuspal deflection.</p><p>Keywords<br />Base materials; Cuspal defection; Composite resin; Direct restoration; Indirect restoration.</p>

2020 ◽  
Vol 47 (3) ◽  
pp. 320-326
Author(s):  
Kunho Lee ◽  
Jongsoo Kim ◽  
Jisun Shin ◽  
Miran Han

The aim of this study was to compare compressive strength and microhardness of recently introduced alkasite restorative materials with glass ionomer cement and flowable composite resin.For each material, 20 samples were prepared respectively for compressive strength and Vickers microhardness test. The compressive strength was measured with universal testing machine at crosshead speed of 1 mm/min. And microhardness was measured using Vickers Micro hardness testing machine under 500 g load and 10 seconds dwelling time at 1 hour, 1 day, 7 days, 14 days, 21 days and 35 days.The compressive strength was highest in composite resin, followed by alkasite, and glass ionomer cement. In microhardness test, composite resin, which had no change throughout experimental periods, showed highest microhardness in 1 hour, 1 day, and 7 days measurement. The glass ionomer cement showed increase in microhardness for 7 days and no difference was found with composite resin after 14 days measurement. For alkasite, maximum microhardness was measured on 14 days, but showed gradual decrease.


2007 ◽  
Vol 21 (3) ◽  
pp. 204-208 ◽  
Author(s):  
André Mallmann ◽  
Jane Clei Oliveira Ataíde ◽  
Rosa Amoedo ◽  
Paulo Vicente Rocha ◽  
Letícia Borges Jacques

The purpose of this study was to evaluate the compressive strength of two glass ionomer cements, a conventional one (Vitro Fil® - DFL) and a resin-modified material (Vitro Fil LC® - DFL), using two test specimen dimensions: One with 6 mm in height and 4 mm in diameter and the other with 12 mm in height and 6 mm in diameter, according to the ISO 7489:1986 specification and the ANSI/ADA Specification No. 66 for Dental Glass Ionomer Cement, respectively. Ten specimens were fabricated with each material and for each size, in a total of 40 specimens. They were stored in distilled water for 24 hours and then subjected to a compressive strength test in a universal testing machine (EMIC), at a crosshead speed of 0.5 mm/min. The data were statistically analyzed using the Kruskal-Wallis test (5%). Mean compressive strength values (MPa) were: 54.00 ± 6.6 and 105.10 ± 17.3 for the 12 mm x 6 mm sample using Vitro Fil and Vitro Fil LC, respectively, and 46.00 ± 3.8 and 91.10 ± 8.2 for the 6 mm x 4 mm sample using Vitro Fil and Vitro Fil LC, respectively. The resin-modified glass ionomer cement obtained the best results, irrespective of specimen dimensions. For both glass ionomer materials, the 12 mm x 6 mm matrix led to higher compressive strength results than the 6 mm x 4 mm matrix. A higher variability in results was observed when the glass ionomer cements were used in the larger matrices.


2020 ◽  
Vol 10 (11) ◽  
pp. 1960-1964
Author(s):  
Mansour K. A. Assery ◽  
Abdulrahman Alshubat ◽  
AlWaleed Abushanan ◽  
Nawaf Labban ◽  
Mohamed Hashem

The study evaluated the addition of silver (Ag) and titanium dioxide (TiO2) nanoparticles to conventional glass ionomer cement (GIC), considering compressive strength (CS), diametral tensile strength (DTS), flexural strength (FS), and hardness. Ag and TiO2 nanoparticles were blended into the powder of a commercially available GIC restorative material at 5% (w/w). Unblended powder was used as a control. One hundred twenty samples were prepared from two study groups and one control group (n = 10). CS, DTS, and FS were evaluated using a universal testing machine, while hardness was measured by Vickers microhardness testing. The data obtained were analyzed using One-way analysis of variance and the Tukey?s test (p < 0.05). GIC containing Ag and TiO2 nanoparticles significantly improved the CS, DTS, and hardness compared to the control group (p < 0.05). However, the FS was not much affected by the addition of either of the nanoparticles (p >0.05). TiO2 blended GIC demonstrated significantly higher CS (154.20+2.38) and DTS (13.2±0.5 MPa) compared to control 117.2±1.2 MPa and 7.2 ±0.8 MPa, respectively. While Blend of GIC+Ag nanoparticles showed the highest FS (29.0±0.7 MPa). Additionally, the blend of GIC+TiO2 exhibited the highest hardness (90.4±1.1 VHN). Ag and TiO2 blended GICs might guarantee their use in occlusal or higher stress-bearing areas.


2018 ◽  
Vol 19 (12) ◽  
pp. 4082 ◽  
Author(s):  
Raphael Pilo ◽  
Sharon Agar-Zoizner ◽  
Shaul Gelbard ◽  
Shifra Levartovsky

The retention of laser-sintered cobalt-chromium (Co-Cr)-based crowns were examined after dentin pretreatment with desensitizing paste containing 8% arginine and calcium carbonate (DP-ACC). Forty lower first molars were prepared using a standardized protocol. The Co-Cr crowns were produced using selective laser melting. The teeth were either pretreated with the desensitizing paste or not pretreated. After one week, each group was cemented with glass ionomer cement (GIC) or zinc phosphate cement (ZPC). Surface areas of the teeth were measured before cementation. After aging, a universal testing machine was used to test the retentive strength of the cemented crown-tooth assemblies. The debonded surfaces of the teeth and crowns were examined at 2.7× magnification. Pretreating the dentin surfaces with the desensitizing paste before cementation with GIC or ZPC did not affect the retention of the Co-Cr crowns. The retention of the GIC group (6.04 ± 1.10 MPa) was significantly higher than that of the ZPC group (2.75 ± 1.25 MPa). The predominant failure mode for the ZPC and the nontreated GIC group was adhesive cement-dentin failure; for the treated GIC group, it was adhesive cement-crown failure. The desensitizing paste can be safely used to reduce post-cementation sensitivity without reducing the retentive strength of Co-Cr crowns cemented with GIC or ZPC.


2018 ◽  
Vol 2 (1) ◽  
pp. 75-81
Author(s):  
Martha Mozartha ◽  
Muthiara Praziandithe ◽  
Sulistiawati Sulistiawati

Glass Ionomer Cement (GIC) memiliki sifat-sifat yang menguntungkan sebagai material restorasi. Namun, penggunaannya terbatas karena GIC memiliki kekuatan tekan yang rendah. Berbagai penelitian dilakukan untuk meningkatkan kekuatan tekan GIC, salah satunya penambahan hidroksiapatit ke bubuk GIC. Hidroksiapatit dapat disintesis dari larutan kimia atau berbagai limbah alam, misalnya cangkang telur, melalui metode presipitasi. Tujuan penelitian ini adalah untuk mengetahui pengaruh penambahan hidroksiapatit dari cangkang telur terhadap kekuatan tekan GIC Fuji IX (GC Corporation). Pembuatan 32 silinder GIC berdiameter 4mm dan tinggi 6mm dibagi menjadi 2 kelompok, yaitu: kelompok GIC tanpa penambahan hidroksiapatit sebagai kelompok kontrol (n=16) dan kelompok GIC dengan penambahan 8% hidroksiapatit sebagai kelompok uji (n=16). Kekuatan tekan diukur dengan Universal Testing Machine. Data dianalisis menggunakan uji T tidak berpasangan. Hasil pengukuran rata-rata kekuatan tekan GIC kelompok kontrol adalah 104,33±1,36 MPa dan kelompok uji adalah 109,52±1,58 MPa. Hasil uji T pada data tersebut menunjukkan perbedaan signifikan antar kelompok (p


2016 ◽  
Vol 3 (1) ◽  
pp. 27
Author(s):  
Malun Nasrudin ◽  
Dwi Warna Aju Fatmawati ◽  
FX Ady Soesetijo

Background: Zinc phosphate, glass-ionomer, and resin cement are the most commonly used as luting cements. Flowable composite resin could reduce restoration microleakage and provided better marginal seal in dentin. Purpose: The objective of the study was to compare microleakage between flowable composite resin and cement luting materials.Methods: The study was experimental laboratory by the post test only without control group design. The sample size was 18, which was divided into 3 groups. Each group consisted of 6 samples. Glass-ionomer cement and zinc phosphate were luting cement materials that used in the study. Microleakage measurement method used stereomicroscope after the samples were stored in methylen blue 0.25%.Results: The smallest average value of microleakage was in the flowable composite resin group (29,16%). One way ANOVA test results showed that there were significant differences between treatment groups (p=0.000). Conclusion: It was concluded that flowable composite resin have smaller microleakage average value than glass-ionomer cement and zinc phosphate.


2019 ◽  
Vol 31 (2) ◽  
pp. 36-43
Author(s):  
Ayat F AL-Shimmary ◽  
Abeer M. Hassan

Background: Dental caries is one of the most significant problems in world health care. Restoring carious primary teeth is one of the major treatment goals for Children, and the light activated resin restoration materials like composite, resin-modified glass ionomer and polyacid-modified which was introduced in dentistry in 1970, widely used in clinical dentistry but its application increased dramatically in recent years because of its biocompatibility, color matching, good adhesive properties of its resemblance in physical and mechanical aspects to tooth. The aim of this study: To evaluate the microleakage of Polyacid-Modified Composite resin Compared to Flowable Hybrid Composite and Resin-Modified Glass ionomer cement. Materials and methods: Thirty extracted primary molar teeth and thirty extracted permenant premolar teeth were used in this study 20 for each material, then standardized Class V cavities of teeth was prepared in the buccal and lingual surfaces. Using Polyacid-modified composite Resin (Compomer), flowable composite resin and Resin-modified glass Ionomer RMGI. The samples will be divided into three groups according to type of restorative material used and light cured with a light cure device (Ivoclar Vivadent Bluephace), after complete curing the sample will examined by Scanning electron microscope (SEM) and then measure the microleakage. Results: The RMGI shows the statistically significantly lowest mean value of microleakage, followed by Compomer shows statistically significantly lower mean value. Flowable Composite shows the statistically significantly highest mean microleakage. There is no statistically significant difference in microleakage values between the permanent and primary teeth. Conclusion: The Resin-modified glass Ionomer is better in term of microleakage than Polyacid-modified composite Resin and Flowable Composite.


2020 ◽  
Vol 7 (1) ◽  
pp. 40
Author(s):  
Clarinda Vinindya ◽  
Cynthia Pratiwi ◽  
Yosi Kusuma Eriwati ◽  
Siti Triaminingsih ◽  
Decky J Indrani

Background: The temperature and salivary pH in a person's mouth are highly dynamic (e.g., before, during, and after eating) and so restorations in a cavity must be resilient to these variable conditions. Temperature and immersion conditions affect the mechanical properties of a restoration. This study aimed to determine the effect of environmental conditions on diametral tensile strength (DTS) and surface microhardness of a resin composite with alkaline fillers or zirconia–reinforced glass ionomer cement (Zr-reinforced GIC). Method: Thirty specimens of a resin composite with alkaline fillers (Cention-N, Ivoclar-Vivadent, Lichtenstein) and 30 specimens with zirconia-reinforced GIC (Zirconomer, Shofu, Japan) were stored at different conditions (23°C and 37°C; with and without immersion in water) for 24 hours. DTS was tested with a Universal Testing Machine (AGS-X series, Shimadzu, Japan) and surface microhardness was tested with a Vickers Microhardness tester (HMV-G Series Micro Vickers Microhardness Tester, Shimadzu, Japan). Data were analyzed statistically using a one-way ANOVA test (and Shapiro-Wilk test. Result: The values of microhardness and DTS increased significantly both for the composite resin alkasite and zirconia-reinforced GIC with increasing temperature in the groups without immersion. However, there was a significant decrease in microhardness and DTS after immersion in distilled water at 37°C for both the composite resin alkasite and zirconia-reinforced GIC. Conclusion: It can be concluded that storage conditions affect the microhardness and DTS of resin composite Alkasite and Zirconia-reinforced GIC


Sign in / Sign up

Export Citation Format

Share Document