scholarly journals Evaluation of The Microleakage of Polyacid Modified Composite Compared to Hybrid Composite and Resin Modified Glass Ionomer Cement in Primary and Permanent Teeth Restoration (An in vitro study)

2019 ◽  
Vol 31 (2) ◽  
pp. 36-43
Author(s):  
Ayat F AL-Shimmary ◽  
Abeer M. Hassan

Background: Dental caries is one of the most significant problems in world health care. Restoring carious primary teeth is one of the major treatment goals for Children, and the light activated resin restoration materials like composite, resin-modified glass ionomer and polyacid-modified which was introduced in dentistry in 1970, widely used in clinical dentistry but its application increased dramatically in recent years because of its biocompatibility, color matching, good adhesive properties of its resemblance in physical and mechanical aspects to tooth. The aim of this study: To evaluate the microleakage of Polyacid-Modified Composite resin Compared to Flowable Hybrid Composite and Resin-Modified Glass ionomer cement. Materials and methods: Thirty extracted primary molar teeth and thirty extracted permenant premolar teeth were used in this study 20 for each material, then standardized Class V cavities of teeth was prepared in the buccal and lingual surfaces. Using Polyacid-modified composite Resin (Compomer), flowable composite resin and Resin-modified glass Ionomer RMGI. The samples will be divided into three groups according to type of restorative material used and light cured with a light cure device (Ivoclar Vivadent Bluephace), after complete curing the sample will examined by Scanning electron microscope (SEM) and then measure the microleakage. Results: The RMGI shows the statistically significantly lowest mean value of microleakage, followed by Compomer shows statistically significantly lower mean value. Flowable Composite shows the statistically significantly highest mean microleakage. There is no statistically significant difference in microleakage values between the permanent and primary teeth. Conclusion: The Resin-modified glass Ionomer is better in term of microleakage than Polyacid-modified composite Resin and Flowable Composite.

2015 ◽  
Vol 18 (2) ◽  
pp. 103 ◽  
Author(s):  
Daphne Camara Barcellos ◽  
Nicolas Petrucelli ◽  
Sérgio Eduardo de Paiva Gonçalves ◽  
Milena Traversa Palazon ◽  
Bianca Mitsue Goulart Sobue ◽  
...  

Author(s):  
Kiana Poorzandpoush ◽  
Mehdi Shahrabi ◽  
Alireza Heidari ◽  
Zohre Sadat Hosseinipour

Objectives: This study aimed to compare the shear bond strength (SBS) of self-adhesive and conventional flowable composites and resin-modified glass-ionomer cement (RMGIC) to primary dentin. Materials and Methods: In this in vitro, experimental study, the buccal surface of 48 primary canine and first molar teeth was longitudinally sectioned to expose dentin. The teeth were randomly divided into three groups (n=16) of 37.5% phosphoric acid+ OptiBond+ Premise Flow composite (group 1), Vertise Flow composite (group 2) and RMGIC (group 3). A plastic cylindrical mold was placed on the exposed dentin and filled with restorative materials. The samples were then immersed in distilled water at 37°C for 24 hours, subjected to 1000 thermal cycles between 5-55°C and underwent SBS test. The mode of failure was determined under a stereomicroscope. Data were analyzed using one-way ANOVA and Tukey’s test. Results: A significant difference was noted in SBS of the groups (P<0.05). The SBS of conventional flowable composite was significantly higher that of RMGIC and self-adhesive flowable composite (P<0.05). The difference in SBS of RMGIC and self-adhesive flowable composite was not significant (P>0.05). Failure at the dentin-restoration interface (adhesive failure) had the highest frequency in groups 1 and 2. The frequency of adhesive failure was 100% in group 3. Conclusions: Within the limitations of this study, the conventional flowable composite yielded the highest SBS to primary dentin. Self-adhesive flowable composite and RMGIC showed the lowest SBS with no significant difference with each other.


Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 6908
Author(s):  
Jalison Jacob Cheruvathoor ◽  
Lincy Rachel Thomas ◽  
Lirin Ann Thomas ◽  
Madhuniranjanswamy Mahalakshmamma Shivanna ◽  
Pramod Machani ◽  
...  

Background: Posts that have been properly fitted can withstand torsion forces and so provide better retention. The push-out bonding strength of glass fiber posts to the root canal was evaluated using resin-modified glass ionomer cement (RMGIC) and flowable composite (FC). Method: Forty single-rooted maxillary central incisors were used in the study. The samples were randomly divided into two groups of 20 teeth each. The crown-down procedure was used to clean and shape the pulp area. A Tenax fiber trans Coltene whaletene post was used by both groups. The first group utilized FC (Filtek Z 350 3M ESPE) to coat the post, whereas the second group used RMGIC (Rely X 3M ESPE). The specimens were cross-sectioned after 24 h. Specimens were cross-sectioned four millimeters thick into coronal and middle parts using a sectioning machine, yielding 40 specimens per group. The strength of the bond between the luting cement and the posts was measured using push-out bond strength testing. We loaded the components at a cross speed of 0.5 mm/min on a universal testing machine until the bond failed. Results: The FC group had a 4.80 N push-out bond strength, whereas the RMGIC group had a 7.11 N push-out bond strength. Conclusion: FC’s mean push-out bond strength score is lower than RMGIC’s.


2019 ◽  
Vol 22 (1) ◽  
pp. 12-14
Author(s):  
Astrid Yudhit ◽  
Kholidina Imanda Harahap ◽  
Yuli Ratna Dewi

Resin modified glass ionomer cement as restorative material used in dentistry especially in primary teeth. Fresh milk is often consumed by children as daily drink and it contains lactic acid. The aim of this study was to evaluate surface roughness of resin modified glass ionomer cement after immersed in fresh milk for 2, 4, and 6 hours. Samples were disc shape resin modified glass ionomer cement with size 5 mm in diameter and 2 mm in thickness. Totally 24 samples were divided into 3 groups (n=8), group immersed for 2 hours, group immersed for 4 hours, and group immersed for 6 hours. Fresh milk was pure cow’s milk that harvest in the morning by the farmer. Surface roughness measurements was done before and after immersed using a profilometer (Surfcorder SE-300, Laboratory Ltd, Japan). Results showed surface roughness change were 0.0217 ± 0.005 μm for groups A, 0.0366 ± 0.006 μm for groups B, and 0.0555 ± 0.004μm for groups of 6 hours. One Way Anova test showed significant differences between groups (p <0.05). It can be concluded that there was significant increased on surface roughness of modified resin ionomer cement after immersed in fresh milk for 2, 4 and 6 hours.    


2014 ◽  
Vol 1 (2) ◽  
pp. 46
Author(s):  
Diana Setya Ningsih

Glass ionomer cement (GIC) is a material that can release fluoride to prevent caries especially in primary teeth. One of the developments of glass ionomer cement in the world of pediatry dentistry is resin-modified glass ionomer cement (RMGIC). The resin-modified glass ionomer cement were still maintaining the clinical advantages oforiginal material, such as fluoride realease, good compatibility and aestehetically. The mechanical properties of rmgic is more higher than gic. These materials have a better adhesion, higher moisture resistance, and a longer shelft life. This paper review aims to know the ability RMGIC as alternative restorative material for primary teeth.


Sign in / Sign up

Export Citation Format

Share Document