scholarly journals Effect of shear bond strength of metallic orthodontic brackets bonded with and without dental adhesive

2018 ◽  
Vol 21 (4) ◽  
pp. 395
Author(s):  
Jaiane Bandoli Monteiro ◽  
Ricardo Toledo Abreu ◽  
Lívia Salgado ◽  
Thais Cachuté Paradella ◽  
Ivone De Oliveira Salgado ◽  
...  

<p><strong>Objective</strong>: The aim of this study was to evaluate the shear bond strength (SBS) of two materials for bonding orthodontic brackets on dental enamel before and after thermocycling. <strong>Material and Methods: </strong>Forty bovine incisors were divided into four groups (n=10). All teeth were etched with 35% phosphoric acid (3M Espe). For bonding of the brackets, G1 and G2 received orthodontic composite resin (Fill Magic Ortodôntico) and G3 and G4, an adhesive (ScotchBond) was used before the orthodontic resin Transbond XT (3M Unitek). G1 and G3 were kept at 37ºC for 24h and G2 and G4 were submitted to thermocycling (5000 cycles, at 5ºC - 55ºC) prior to SBS testing, performed by a universal machine (EMIC) at 1 mm/min, with a 50kgf load cell. Results were analyzed with two-way ANOVA, followed by Tukey's test (p=0.05). Adhesive surfaces were evaluated through stereomicroscopy and classified according to the type of failure presented. <strong>Results</strong>: Surface treatment with dental adhesive presented higher SBS values, regardless thermocycling (G3: 12.01 MPa; G4: 12.36 MPa) and the lowest values occurred in G2 (8.89 MPa). For groups without adhesive and with thermocycling, a higher number of completely adhesive failures between composite and enamel were present. For groups in which dental adhesive was used, regardless thermocycling, the failures were mainly adhesive between composite and the bracket. <strong>Conclusion</strong>: Surface etching of enamel with 35% phosphoric acid with or without adhesive showed a positive effect on SBS. The application of adhesive on enamel surface contributed to the maintenance of SBS values after thermocycling.</p><p> </p><p><strong>Keywords</strong></p><p>Aging; Orthodontic brackets; Composite resins; Shear strength.</p>

2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Fahad F. Alsulaimani

Objective. To determine the effect of lactic acid at various concentrations on the shear bond strength of orthodontic brackets bonded with the resin adhesive system before and after water storage. Materials and Methods. Hundred extracted human premolars were divided into 5 treatment groups and etched for 30 seconds with one of the following agents: lactic acid solution with (A) 10%, (B) 20%, (C) 30%, and (D) 50%; group E, 37% phosphoric acid (control). Metal brackets were bonded using a Transbond XT. Bonding effectiveness was assessed by shear bond strength after 24 hours and 6 months of water storage at 37°C. The data were analyzed with 2-way analysis of variance and Tukey’s Honestly Significant Difference (HSD) test (α=.001). Results. Lactic acid concentration and water storage resulted in significant differences for brackets bond strength (P<.001). 20% lactic acid had significantly higher mean bond strength values (SD) for all conditions: 24 hours [12.2 (.7) MPa] and 6 months [10.1 (.6) MPa] of water storage. 37% phosphoric acid had intermediate bond strength values for all conditions: 24 hours [8.2 (.6) MPa] and 6 months [6.2 (.6) MPa] of water storage. Also, there were differences in bond strength between storage time, with a reduction in values from 24 hours and 6 months for all experimental groups (P<.001). Conclusion. Lactic acid could be used in place of phosphoric acid as an enamel etchant for bonding of orthodontic brackets.


1997 ◽  
Vol 11 (4) ◽  
pp. 245-248 ◽  
Author(s):  
Carlos de Paula EDUARDO ◽  
Wilson Tavares de OLIVEIRA JUNIOR ◽  
Silvio Issáo MYAKI ◽  
Denise Maria ZEZELL

This study has been focused on a comparison between the shear bond strength of a composite resin attached to dental enamel surface, after a 35% phosphoric acid etching and after a Nd:YAG laser irradiation with 165.8 J/cm2 of energy density per pulse. After etching and attaching resin to these surfaces, the specimens were thermocycled and then underwent the shearing bond strength tests at a speed of 5 mm/min. The results achieved, after statistical analysis with Student's t-test, showed that the adhesion was significantly greater in the 35% phosphoric acid treated group than in the group treated with the Nd:YAG laser, thus demonstrating the need for developing new studies to reach the ideal parameters for an effective enamel surface conditioning as well as specific adhesives and composite resins when Nd:YAG laser is used


2014 ◽  
Vol 25 (6) ◽  
pp. 519-523 ◽  
Author(s):  
Erica Moreno Zanconato-Carvalho ◽  
João Felipe Bruniera ◽  
Natália Spadini de Faria ◽  
Vivian Colucci ◽  
Danielle Cristine Messias

Surface treatment of dentin before the bleaching procedure may affect its permeability and influence the bond strength of restorative materials. This study evaluated the influence of surface treatment before the bleaching on shear bond strength (SBT) of restorative materials to intracoronal dentin. Dentin slabs were subjected to surface treatment: no bleaching (control - CON), no surface treatment + bleaching (HP), 37% phosphoric acid + bleaching (PA) and Er:YAG laser + bleaching (L). After the bleaching procedure, specimens (n=10) were restored with: microhybrid composite resin (MH), flowable composite resin (F), and resin-modified glass-ionomer cement (RMGIC). The shear test was carried out. ANOVA and Tukey's test (α=0.05) showed significant difference for surface treatment and restorative materials (p<0.05). CON presented higher STB and was statistically different from HP (p<0.05). PA and L showed intermediate values and were statistically similar to CON and HP (p>0.05). STB for MH and F were higher than RMGIC (p<0.05), and did not differ from each other (p>0.05). The surface treatments with phosphoric acid and Er:YAG laser before the bleaching procedure provided shear bond strength at the same level of unbleached dentin and the composite resins presented superior bond strength to the intracoronal dentin.


2011 ◽  
Vol 8 (4) ◽  
pp. 183 ◽  
Author(s):  
Vahid Rakhshan ◽  
Reyhaneh Yazdani ◽  
Behnam Khosravanifard ◽  
Hamid Rakhshan

1995 ◽  
Vol 22 (3) ◽  
pp. 237-243 ◽  
Author(s):  
B. Mizrahi ◽  
E. Mizrahi ◽  
P. E. Cleaton-Jones

Previous studies have shown that due to poor adhesion between bonding resins and stainless steel orthodontic brackets, this interface remains a weak link in clinical orthodontic practice. A paste-like substance, Sebond®, has been developed in order to strengthen the weak link between metal and resin. The present study was carried out to determine the effect on the shear bond strength, of pretreating the bracket base with Sebond®. Two composite resins, Concise® Orthodontic Bonding System and Nimetic-Grip® were tested, using 40 orthodontic brackets for each resin; 20 brackets were pretreated with Sebond® and the remaining 20 acted as controls. Of the Sebond® brackets 10 were sandblasted prior to Sebond® application. The bonded brackets were stored in water at 37°C for 14 days after which they were tested to failure in the shear mode. Analysis of the results, using a general linear models analysis, showed that pretreating the brackets with Sebond® significantly reduced shear bond strength (P<0.001).


2008 ◽  
Vol 78 (1) ◽  
pp. 125-128 ◽  
Author(s):  
Samir E. Bishara ◽  
Manal Soliman ◽  
John F. Laffoon ◽  
John Warren

Abstract Objective: To determine the shear bond strength of a new resin glass ionomer adhesive with higher fluoride release properties when bonding orthodontic brackets. Materials and Methods: Sixty freshly extracted human molars were collected and stored in a solution of 0.1% (weight/volume) thymol. The teeth were cleaned and polished. The teeth were randomly separated into three groups according to the enamel conditioner/etchant and adhesive used. Group I: 20 teeth conditioned with 10% polyacrylic acid and brackets bonded with the new glass ionomer adhesive. Group II: 20 teeth conditioned with 37% phosphoric acid and brackets bonded with the new glass ionomer adhesive. Group III (control): 20 teeth etched with 37% phosphoric acid and brackets bonded with a composite adhesive. Results: The results of the analysis of variance comparing the three experimental groups (F = 10.294) indicated the presence of significant differences between the three groups (P = .0001). The shear bond strengths were significantly lower in the two groups bonded with the new glass ionomer adhesive whether conditioned with polyacrylic acid (x̄ = 3.2 ± 1.8 MPa) or phosphoric acid (x̄ = 2.3 ± 1.1 MPa), while the mean shear bond strength of the composite adhesive was 5.2 ± 2.9 MPa. Conclusions: Although the increased fluoride release from the new glass ionomer has the potential of decreasing decalcification around orthodontic brackets, the shear bond strength of the material is relatively low.


2015 ◽  
Vol 39 (4) ◽  
pp. 348-357 ◽  
Author(s):  
RM Agarwal ◽  
R Yeluri ◽  
C Singh ◽  
AK Munshi

Objective: To suggest Papacarie® as a new deproteinizing agent in comparison with indigenously prepared 10% papain gel before and after acid etching that may enhance the quality of the bond between enamel surface and composite resin complex. Study design: One hundred and twenty five extracted human premolars were utilized and divided into five groups: In the group 1, enamel surface was etched and primer was applied. In group 2, treatment with papacarie® for 60 seconds followed by etching and primer application. In group 3, etching followed by treatment with papacarie® for 60 seconds and primer application. In group 4, treatment with 10% papain gel for 60 seconds followed by etching and primer application. In group 5, etching followed by treatment with 10% papain gel for 60 seconds and primer application . After bonding the brackets, the mechanical testing was performed using a Universal testing machine. The failure mode was analyzed using an adhesive remnant index. The etching patterns before and after application of papacarie® and 10% papain gel was also evaluated using SEM. The values obtained for shear bond strength were submitted to analysis of variance and Tukey test (p &lt; 0.05). Results: It was observed that group 2 and group 4 had the highest shear bond strength and was statistically significant from other groups (p=0.001). Regarding Adhesive remnant index no statistical difference was seen between the groups (p=0.538). Conclusion: Papacarie® or 10% papain gel can be used to deproteinize the enamel surface before acid etching to enhance the bond strength of orthodontic brackets.


2020 ◽  
Vol 7 (4) ◽  
pp. 233-241
Author(s):  
Atay Ayșe ◽  
◽  
Najafova Lamia ◽  
Kurtulmus Huseyin Mehmet ◽  
Üşümez Aslihan ◽  
...  

Introduction The aim of this study was to evaluate the micro-shear bond strength (μSBS) of different repair systems (Clearfil Repair, iGOS Repair) to restorative materials for CAD/CAM (Cerasmart, Lava Ultimate, InCoris TZI , VITA Suprinity, VITA Mark II, IPS e.max CAD, IPS Empress CAD). Methodology The 140 1.2 mm-thick specimens were prepared from CAD/CAM blocks (n=20) and thermocycled (10,000 cycles, 5–55°C, dwell time 20s). The specimens were randomly divided into two groups according to the repair system: Clearfil Repair (40% phosphoric acid+mixture of Clearfil Porcelain Bond Activator and Clearfil SE Bond Primer+Clearfil SE Bond+CLEARFIL MAJESTY ES-2) and iGOS Repair (40% phosphoric acid+ Multi Primer LIQUID+ iGOS Bond+ iGOS Universal). The composite resins were polymerized. All specimens were stored in distilled water at 37°C for 24 hours. The μSBS test was performed with a micro-shear testing machine (at 1 mm/min). The data were analyzed using two-way ANOVA, Tukey’s multiple comparison tests at a significance level of p<0.05. Each failure modes were examined under a stereomicroscope at×16 magnification. Results The type of CAD/CAM restorative material and repair system showed a significant effect on the μSBS (p<0.05). Specimens repaired with the iGOS Repair system showed the highest μSBS values than the Clearfil Repair system among all tested materials except for the InCoris TZI group (p<0.05). Conclusion All groups, except for the InCoris TZI group, repaired with iGOS Repair system showed higher μSBS than Clearfil Repair. The type of restoration and repair material is important in the success of the fracture repair.


2013 ◽  
Vol 24 (5) ◽  
pp. 513-516 ◽  
Author(s):  
Américo Bortolazzo Correr ◽  
Ana Rosa Costa ◽  
Adriana Simoni Lucato ◽  
Silvia Amélia Vedovello ◽  
Heloísa Cristina Valdrighi ◽  
...  

The aim of this study was to evaluate the shear bond strength (SBS) of metallic orthodontic brackets bonded to bovine teeth using light-activated or chemically activated composite resins. One hundred and twenty bovine mandibular incisors were divided into 6 groups (n=20), according to the bonding materials: Transbond XT (T); Enforce Dual (ED); Enforce chemical (EC); Enforce Light-activated (EL); Concise Orthodontic (C); and RelyX Unicem Capsule (UN). Metallic brackets were positioned and firmly bonded to the teeth. Light-activation for T, ED, EL and UN was carried out with four exposures on each side of the bracket with 20 s total exposure times using XL2500 (3M ESPE). EC and C were chemically cured. Next, all specimens were stored in deionized water at 37 °C for 24 h. The shear bond strength was carried out at a crosshead speed of 1.0 mm/min. Data were subjected to one-way ANOVA and Tukey's test (α=0.05). The adhesive remnant index (ARI) was evaluated at 8× magnification. C (17.72±4.45) presented significantly higher SBS means (in MPa) than the other groups (p<0.05), followed by EC (11.97±5.77) and ED (10.57±1.32). EL (5.39±1.06) and UN (4.32±1.98) showed the lowest SBS means, while T (9.09±2.56) showed intermediate values. For ARI, there was a predominance of score 0 for EC, C and UN, and score 3 for T, ED and EL. In conclusion, the activation mode influenced the SBS.


2007 ◽  
Vol 77 (1) ◽  
pp. 108-112 ◽  
Author(s):  
Tamer Turk ◽  
Selma Elekdag-Turk ◽  
Devrim Isci

Abstract Objective: To evaluate the effect of a self-etching primer on shear bond strengths (SBS) at the different debond times of 5, 15, 30, and 60 minutes and 24 hours. Materials and Methods: Brackets were bonded to human premolars with different etching protocols. In the control group (conventional method [CM]) teeth were etched with 37% phosphoric acid. In the study group, a self-etching primer (SEP; Transbond Plus Self Etching Primer; 3M Unitek, Monrovia, Calif) was applied as recommended by the manufacturer. Brackets were bonded with light-cure adhesive paste (Transbond XT; 3M Unitek) and light-cured for 20 seconds in both groups. The shear bond test was performed at the different debond times of 5, 15, 30 and 60 minutes and 24 hours. Results: Lowest SBS was attained with a debond time of 5 minutes for the CM group (9.51 MPa) and the SEP group (8.97 MPa). Highest SBS was obtained with a debond time of 24 hours for the CM group (16.82 MPa) and the SEP group (19.11 MPa). Statistically significant differences between the two groups were not observed for debond times of 5, 15, 30, or 60 minutes. However, the SBS values obtained at 24 hours were significantly different (P &lt; .001). Conclusions: Adequate SBS was obtained with self-etching primer during the first 60 minutes (5, 15, 30 and 60 minutes) when compared with the conventional method. It is reliable to load the bracket 5 minutes after bonding using self-etching primer (Transbond Plus) with the light-cure adhesive (Transbond XT).


Sign in / Sign up

Export Citation Format

Share Document