scholarly journals Spatial distribution of physical attributes of an Ultisol under papaya crop

2018 ◽  
Vol 8 (4) ◽  
pp. 526-536
Author(s):  
Juliao Soares de Souza Lima ◽  
Walas Permanhane Sturião ◽  
Ivoney Gontijo ◽  
Samuel Assis Silva

The successful development of the root system of plants depends on the favorable conditions of soil physical attributes. The objective of this work was to study the spatial variability of physical attributes in an Ultisol cultivated with papaya. The soil was prepared mechanically plowing, harrowing, sulcal and subsoiler. In the center of the crop field was built a sampling grid with points spaced 5.7 m, totalizando129 georeferenced points. The soil samples at two depths (0 - 0.20 m, 0.20 - 0.40 m) were collected for four months after transplantation, to determine the total porosity (TP), soil moisture (Um), soil bulk density (BD) and soil penetration resistance in the planting row (PRPR) and in the traffic machines rows (PRRow). The soil penetration resistance in the planting row and in the traffic machines row was determined. The BD1 and BD2 showed the lowest CV values, and the data were fitted to the exponential and spherical models, respectively, with spatial dependence ranges of 20 and 28 m. At the layer of 0-0.20 m depth, the attributes showed the same spatial distribution pattern. At the layer of 0-0.20 m depth, the soil penetration resistance showed 7.5 times greater in the traffic machines region (rw spacing) than the value found in the planting row.

2004 ◽  
Vol 47 (5) ◽  
pp. 725-732 ◽  
Author(s):  
José Frederico Centurion ◽  
Amauri Nelson Beutler ◽  
Zigomar Menezes de Souza

The objective of this study was to assess the physical attributes of a kaolinitic oxisol, medium texture (Haplustox) and an oxidic oxisol, clayey (Eutrustox) under different usage systems, localized in the region of Jaboticabal, SP, Brazil. The usage systems were sugarcane, cotton and forest. Parameters such as soil bulk density, total porosity, macro and microporosity at the depths of 0.0-0.1; 0.1-0.2; 0.2-0.3, and 0.3-0.4 m were evaluated. Haplustox showed greater bulk density and smaller total porosity, macro and microporosity. The usage increased the bulk density in 0.0-0.3 m depth, with greater effects on the kaolinitic oxisol, mainly in 0.1-0.2 m depth in the areas cultivated with sugarcane.


2011 ◽  
Vol 91 (6) ◽  
pp. 957-964 ◽  
Author(s):  
C. Halde ◽  
A. M. Hammermeister ◽  
N. L. Mclean ◽  
K. T. Webb ◽  
R. C. Martin

Halde, C., Hammermeister, A. M., McLean, N. L., Webb, K. T. and Martin, R. C. 2011. Soil compaction under varying rest periods and levels of mechanical disturbance in a rotational grazing system. Can. J. Soil Sci. 91: 957–964. In Atlantic Canada, data are limited regarding the effect of grazing systems on soil compaction. The objective of the study was to determine the effect of intensive and extensive rotational pasture management treatments on soil bulk density, soil penetration resistance, forage productivity and litter accumulation. The study was conducted on a fine sandy loam pasture in Truro, Nova Scotia. Each of the eight paddocks was divided into three rotational pasture management treatments: intensive, semi-intensive and extensive. Mowing and clipping were more frequent in the intensive than in the semi-intensive treatment. In the extensive treatment, by virtue of grazing in alternate rotations, the rest period was doubled than that of the intensive and semi-intensive treatments. Both soil bulk density (0–5 cm) and penetration resistance (0–25.5 cm) were significantly higher in the intensive treatment than in the extensive treatment, for all seasons. Over winter, bulk density decreased significantly by 6.8 and 3.8% at 0–5 and 5–10 cm, respectively. A decrease ranging between 40.5 and 4.0% was observed for soil penetration resistance over winter, at 0–1.5 cm and 24.0–25.5 cm, respectively. The intensive and semi-intensive treatments produced significantly more available forage for grazers annually than the extensive treatment. Forage yields in late May to early June were negatively correlated with spring bulk density.


2016 ◽  
Vol 36 (3) ◽  
pp. 449-459 ◽  
Author(s):  
Wininton M. da Silva ◽  
Aloísio Bianchini ◽  
Cesar A. da Cunha

ABSTRACT This study aimed to describe the behavior of models for adjusting data of soil penetration resistance for variations in soil moisture and soil bulk density. The study was carried out in Lucas do Rio Verde, MT, Brazil in a typic dystrophic red-yellow Latosol (Oxisol) containing 0.366 kg kg−1 of clay. Soil penetration resistance measurements were conducted in the soil moistures of 0.33 kg kg−1, 0.28 kg kg−1, 0.25 kg kg−1 and 0.22 kg kg−1. Soil penetration resistance behavior due to variations in soil moisture and soil bulk density was assessed by estimating the soil resistance values by non-linear models. There was an increase of the soil penetration resistance values as soil was losing moisture. For the same edaphic condition studied, small differences in the data of soil bulk density affect differently the response of soil resistance as a function of moisture. Both soil bulk density and soil moisture are essential attributes to explain the variations in soil penetration resistance in the field. The good representation of the critical soil bulk density curve as a limiting compression indicator requires the proper choice of the restrictive soil resistance value for each crop.


2018 ◽  
Vol 10 (8) ◽  
pp. 277
Author(s):  
Eduardo Antonio Neves dos Santos ◽  
Milton César Costa Campos ◽  
Jose Mauricio da Cunha ◽  
Fernando Gomes de Souza ◽  
Paulo Guilherme Salvador Wadt ◽  
...  

Understanding and quantifying the impact of soil management and use on its physical properties are essential to the development of sustainable agricultural systems. Thus, the aim of this study was to assess the effect of agricultural gypsum, soil scarification and succession planting on the physical attributes of dystrophic red-yellow latosol in Porto Velho, Rondônia state (RO), Brazil. The treatments used were absence and application of 2000 kg ha-1 of gypsum, absence and use of soil scarification, and three types of crop succession: SF (soybean/fallow), SMF (soybean/maize/fallow) and SMBF (soybean/maize/brachiaria/fallow). A randomized block design was used on eight blocks, for a 2 × 2 × 3 factorial arrangement. Soil parameters assessed were macroporosity, microporosity, total porosity, soil density, moisture content and penetration resistance. Data normality was assessed using the Shapiro-Wilk test. The data were submitted to analysis of variance and means were compared by the Scott-Knott test at 5% probability. The highest macroporosity and total porosity values were recorded in treatments with gypsum application and soil scarification. Penetration resistance was lower in the SMBF and SMF crop successions. There was no treatment effect on the soil density.


2012 ◽  
Vol 32 (1) ◽  
pp. 91-101 ◽  
Author(s):  
Cecilia Medina ◽  
Jesús H. Camacho-Tamayo ◽  
César A. Cortés

The penetration resistance (PR) is a soil attribute that allows identifies areas with restrictions due to compaction, which results in mechanical impedance for root growth and reduced crop yield. The aim of this study was to characterize the PR of an agricultural soil by geostatistical and multivariate analysis. Sampling was done randomly in 90 points up to 0.60 m depth. It was determined spatial distribution models of PR, and defined areas with mechanical impedance for roots growth. The PR showed a random distribution to 0.55 and 0.60 m depth. PR in other depths analyzed showed spatial dependence, with adjustments to exponential and spherical models. The cluster analysis that considered sampling points allowed establishing areas with compaction problem identified in the maps by kriging interpolation. The analysis with main components identified three soil layers, where the middle layer showed the highest values of PR.


Bragantia ◽  
2014 ◽  
Vol 73 (2) ◽  
pp. 171-177 ◽  
Author(s):  
Daniel Dias Valadão Junior ◽  
Aloísio Biachini ◽  
Franciele Caroline Assis Valadão ◽  
Rodrigo Pengo Rosa

This study aimed to evaluate the effect of penetration rate and the size of the cone base on the resistance to penetration under different soil moistures and soil bulk density. The experimental design was completely randomized in a 4x2x2x2 factorial arrangement, with the factors, soil bulk density of 1.0; 1.2; 1.4 and 1.6 Mg m-3, soil moisture at the evaluation of 0.16 and 0.22 kg kg-1, penetration rates of 0.166 and 30 mm s-1 and areas of the cone base of 10.98 and 129.28 mm² resulting in 32 treatments with 8 replicates. To ensure greater uniformity and similarity to field conditions, samples passed through cycles of wetting and drying. Only the interaction of the four factors was not significant. Resistance values varied with the density of the soil, regardless of moisture and penetration rate. Soil penetration resistance was influenced by the size of the cone base, with higher values for the smallest base independent of moisture and soil bulk density. The relationship between resistance to penetration and moisture is not always linear, once it is influenced by soil bulk density. Reduction in the area of the cone leads to an increase in the soil resistance to penetration.


2019 ◽  
Vol 11 (15) ◽  
pp. 87
Author(s):  
Ligia Maria Lucas Videira ◽  
Paulo Ricardo Teodoro Silva ◽  
Diego dos Santos Pereira ◽  
Rafael Montanari ◽  
Alan Rodrigo Panosso ◽  
...  

In no-tillage (NT) and minimum tillage (MT) areas, spatial variability of soil physical properties may affect crop yield. The aim of this study was to assess the spatial distribution of soil physical properties, as well as the yield components and grain yield of soybean (GY), based on the mapping of areas under soil conservation farming systems. We assessed yield components, GY and the physical properties of an Oxisol, under NT and MT using the t-student test, and geostatistics to assess spatial variability. The largest population of NT plants showed no spatial dependence and did not influence GY, but the components related to plant height and soil properties differed between systems. From a spatial standpoint, the kriging maps demonstrated that mass of one thousand grains (MOG), total porosity (TP) and soil bulk density (BD) influenced GY under NT, whereas TP1 exerted the most influence under high soil moisture conditions and MT. The maps make it possible to assess the spatial distribution of soil physical properties and the influence on GY, making them an important tool for more accurate production planning in soil conservation systems.


2011 ◽  
Vol 35 (1) ◽  
pp. 97-104 ◽  
Author(s):  
Marcio Paulo de Oliveira ◽  
Maria Hermínia Ferreira Tavares ◽  
Miguel Angel Uribe-Opazo ◽  
Luis Carlos Timm

Statistical models allow the representation of data sets and the estimation and/or prediction of the behavior of a given variable through its interaction with the other variables involved in a phenomenon. Among other different statistical models, are the autoregressive state-space models (ARSS) and the linear regression models (LR), which allow the quantification of the relationships among soil-plant-atmosphere system variables. To compare the quality of the ARSS and LR models for the modeling of the relationships between soybean yield and soil physical properties, Akaike's Information Criterion, which provides a coefficient for the selection of the best model, was used in this study. The data sets were sampled in a Rhodic Acrudox soil, along a spatial transect with 84 points spaced 3 m apart. At each sampling point, soybean samples were collected for yield quantification. At the same site, soil penetration resistance was also measured and soil samples were collected to measure soil bulk density in the 0-0.10 m and 0.10-0.20 m layers. Results showed autocorrelation and a cross correlation structure of soybean yield and soil penetration resistance data. Soil bulk density data, however, were only autocorrelated in the 0-0.10 m layer and not cross correlated with soybean yield. The results showed the higher efficiency of the autoregressive space-state models in relation to the equivalent simple and multiple linear regression models using Akaike's Information Criterion. The resulting values were comparatively lower than the values obtained by the regression models, for all combinations of explanatory variables.


Agriculture ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 641
Author(s):  
Gerhard Moitzi ◽  
Elisabeth Sattler ◽  
Helmut Wagentristl

Agricultural soils can be affected in their ecological functions by in-field traffic of agricultural machinery. A three-factorial research design was carried out in a field experiment to test the effect of slurry tanker filling level (filled, half-filled, empty), tire inflation pressure of the slurry tanker (high: 300 kPa, low: 100 kPa), and ground covering (+cover crop, −cover crop) on tire track and soil penetration resistance (averaged, 0–20 cm, 21–40 cm) after application on the fields in spring. Additionally, the effect on grain yield of the subsequent culture was considered. The total weight of the tractor slurry tanker combination was 16,470 kg (empty), 25,940 kg (half-filled), and 34,620 kg (filled). The low tire inflation pressure of the slurry tanker increased the mean tire–soil contact area by 75% (filled), 38% (half-filled), and 16% (empty tanker). The results obtained show a significant effect of tire inflation pressure and ground covering on the measured parameters. The tire inflation pressure reduction effect on track depth was highest in the filled slurry tanker (−17.8%). With increasing wheel load, the effect of reduced tire inflation pressure on soil penetration resistance (0–20 cm) increased. In the subsoil (21–40 cm), the effect of tire inflation pressure was much lower, indicating that a reduction of tire inflation pressure preserves the upper layers rather than the lower ones. Furthermore, cover crops are linked to a higher degree of soil deformation after traffic with the tractor–slurry combination due to their loosening effect on the topsoil. Tire tracks were 15.0% deeper in the cover crop field than in the field without a cover crop. It is assumed that cover crop mixtures with different types of root mass can influence the mitigation of soil compaction in an ameliorative way.


2019 ◽  
Vol 49 (2) ◽  
pp. 164-178 ◽  
Author(s):  
Eric R. Labelle ◽  
Benjamin J. Poltorak ◽  
Dirk Jaeger

Forest soils often exhibit low bearing capacities and as a result are often incapable of withstanding high axle loads. In New Brunswick, Canada, five different brush amounts (0, 5, 10, 15, and 20 kg·m–2) were applied as brush mats on machine operating trails during a cut-to-length harvesting operation in a softwood stand to analyze soil disturbance as a result of off-road forest harvesting machine traffic. Soil absolute and relative bulk density and soil penetration resistance measurements were completed below the varying brush mats both before and after forwarding. The mean differences between pre- and post-impact absolute soil dry bulk density values recorded on track areas were 0.24 g·cm–3 for 5–20 kg·m–2 of brush and 0.33 g·cm–3 for 0 kg·m–2 of brush. On average, 40.5%, 17.9%, 14.3%, 15.5%, and 3.6% of all post-forwarding measurements exceeded the threshold for growth-impeding soil bulk density (80% standard Proctor density) for 0, 5, 10, 15 and 20 kg·m–2 of brush, respectively. Soil penetration values >3.0 MPa represented 23.7%, 15.0%, 9.4%, 4.6%, and 0.7% of all post-forwarding test plots with 0, 5, 10, 15, and 20 kg·m–2 of brush, respectively. The results suggest that softwood brush mats of 10 to 20 kg·m–2 placed on machine operating trails play a considerable role in reducing forwarder-induced soil compaction and penetration resistance.


Sign in / Sign up

Export Citation Format

Share Document