scholarly journals Analysis of Relative Motion between Femoral Head and Acetabular Cup and Advances in Computation of the Wear Factor for the Prosthetic Hip Joint

10.14311/454 ◽  
2003 ◽  
Vol 43 (4) ◽  
Author(s):  
O. Calonius ◽  
V. Saikko

The amount and type of wear produced in the prosthetic hip joint depends on the type of relative motion between the femoral head and the acetabular cup. Wear particles removed from the bearing surfaces of the joint can cause adverse tissue reactions resulting in osteolysis and ultimately in loosening of the fixation of the implant. When designing a simulator for evaluation of prospective materials for artificial hip joints it is important to verify that the type of relative motion at the articulation is similar to that produced in walking, involving continually changing direction of sliding. This paper is an overview of recent research done at Helsinki University of Technology on the analysis of the relationship between relative motion and wear in the prosthetic hip joint.To analyze the relative motion, software for computing tracks, referred to as slide tracks, drawn on the counterface by marker points on the bearing surface was developed and experimentally verified. The overall relative motion of the joint was illustrated by a slide track pattern, produced by many points. The patterns resulting from walking motion and from motion produced in ten contemporary hip simulator types were compared. The slide track computations were not limited to illustrational purposes but offered a basis for computing variations of sliding distances, sliding speeds and direction of sliding during a cycle. This was done for the slide track termed the force track, drawn by the resultant contact force. In addition, the product of the instantaneous load and increment of sliding distance was numerically integrated over a cycle. This track integral of load had so far not been determined for the majority of contemporary hip simulators. The track integral can be used in determining the wear factor, making it possible to compare clinical wear rates with those produced by hip simulators. The computation of the wear factor was subsequently improved by replacing the track integral of the resultant contact force with a surface integral computed as the sum of track integrals of a large number of smaller normal forces obtained by discretizing the contact pressure distribution. The slide track software could also be utilized in the conceptual design of new simulators because it was possible to rapidly investigate the effect of changes to the motion waveform amplitudes or phases, or of omitting certain waveforms to simplify the design of a simulator.The slide track analysis showed that walking motion produced mainly open tracks on the center of contact, implying continually changing direction of sliding. This phenomenon, which is crucial for obtaining the correct wear mechanisms for acetabular cups made of polyethylene, was reproduced by simulators having abduction-adduction motion in addition to flexion-extension motion. In the force track computations involving contemporary simulators with the common femoral head size of 28 mm, the sliding distance per cycle and the force track integral per cycle ranged from 19.7 to 34.3 mm and from 17.4 to 43.5 N m, respectively. The average sliding speed ranged from 19.7 to 49.0 mm/s. The sum of track integrals computed with forces obtained by discretizing the contact pressure distribution reached a substantially higher value than the track integral obtained with the resultant contact force only. This suggests that the wear factor is actually overestimated when computed in the conventional way by dividing the wear rate with the force track integral.

Author(s):  
D. A. Glaser ◽  
R. D. Komistek ◽  
H. E. Cates ◽  
M. Mahfouz

The major complications following total hip replacement (THA) are implant loosening, dislocation, instability, fracture and infection. It is hypothesized that vibration, in the range of the resonance frequencies, may cause pain, bone degeneration and fracture. A further understanding of the physical response resulting from impact during femoral head sliding may lead to valuable insight pertaining to THA failure. Therefore, the first objective of this present study was to determine if frequencies propagating through the hip joint near resonant frequencies may lead to wear or loosening of the components. Recently, studies found that femoral head sliding, often referred to as hip separation, between the acetabulum cup and the femoral head does occur, which may also play a role in complications observed with THA today, but a the effects of hip separation and the causes of its occurrence has not been studied as jet. Therefore, the second objective of this study was to determine if a sound sensor, externally attached, could be used to correlate impact loading sounds from femoral head sliding in the acetabular cup. Additional objective of this study was to develop a mathematical model that better simulates the in vivo loading conditions of total hip replacement patients using in vivo fluoroscopic and ground reaction data as input.


Author(s):  
M Jagatia ◽  
D Jalali-Vahid ◽  
Z M Jin

Elastohydrodynamic lubrication was analysed under squeeze-film or normal approach motion for artificial hip joint replacements consisting of an ultra-high molecular weight polyethylene (UHMWPE) acetabular cup and a metallic or ceramic femoral head. A simple ball-in-socket configuration was adopted to represent the hip prosthesis for the lubrication analysis. Both the Reynolds equation and the elasticity equations were solved simultaneously for the lubricant film thickness and hydrodynamic pressure distribution as a function of the squeeze-film time was solved using the Newton-Raphson method. The elastic deformation of the UHMWPE cup was calculated by both the finite element method and a simple equation based upon the constrained column model. Good agreement of the predicted film thickness and pressure distribution was found between these two methods. A simple analytical method based upon the Grubin -Ertel-type approximation developed by Higginson in 1978 [1] was also applied to the present squeeze-film lubrication problem. The predicted squeeze-film thickness from this simple method was found to be remarkably close to that from the full numerical solution. The main design parameters were the femoral head radius, the radial clearance between the femoral head and the acetabular cup, and the thickness and elastic modulus for the UHMWPE cup; the effects of these parameters on the squeeze-film thickness generated in current hip prostheses were investigated.


Author(s):  
D Bennett ◽  
J F Orr ◽  
D E Beverland ◽  
R Baker

Wear of the polyethylene acetabular component is the most serious threat to the long-term success of total hip replacements (THRs). Greatly reduced wear rates have been reported for unidirectional, compared to multidirectional, articulation in vitro. This study considers the multidirectional motions experienced at the hip joint as described by movement loci of points on the femoral head for individual THR patients. A three-dimensional computer program determined the movement loci of selected points on the femoral head for THR patients and normal subjects using kinematic data obtained from gait analysis. The sizes and shapes of these loci were quantified by their sliding distances and aspect ratios with substantial differences exhibited between individual THR patients. The average sliding distances ranged from 10.0 to 18.1 mm and the average aspect ratios of the loci ranged from 2.5 to 9.2 for the THR patients. Positive correlations were found between wear rate and average sliding distance, the inverse of the average aspect ratio of the loci and the product of the average sliding distance and the inverse of the average aspect ratio of the loci. Patients with a normal hip joint range of motion produce multidirectional motion loci and tend to experience more wear than patients with more unidirectional motion loci. Differing patterns of multidirectional motion at the hip joint for individual THR patients may explain widely differing wear rates in vivo.


1999 ◽  
Vol 102 (8) ◽  
pp. 625-631 ◽  
Author(s):  
R. v. Eisenhart-Rothe ◽  
H. Witte ◽  
M. Steinlechner ◽  
M. Müller-Gerbl ◽  
R. Putz ◽  
...  

Author(s):  
A Yew ◽  
M Jagatia ◽  
H Ensaff ◽  
Z M Jin

Contact mechanics analysis for a typical McKee-Farrar metal-on-metal hip implant was carried out in this study. The finite element method was used to predict the contact area and the contact pressure distribution at the bearing surfaces. The study investigated the effects of the cement and underlying bone, the geometrical parameters such as the radial clearance between the acetabular cup and the femoral head, and the acetabular cup thickness, as well as other geometrical features on the acetabular cup such as lip and studs. For all the cases considered, the predicted contact pressure distribution was found to be significantly different from that based upon the classical Hertz contact theory, with the maximum value being away from the centre of the contact region. The lip on the cup was found to have a negligible effect on the predicted contact pressure distribution. The presence of the studs on the outside of the cup caused a significant increase in the local contact pressure distribution, and a slight decrease in the contact region. Reasonably good agreement of the predicted contact pressure distribution was found between a three-dimensional anatomical model and a simple two-dimensional axisymmetric model. The interfacial boundary condition between the acetabular cup and the underlying cement, modelled as perfectly fixed or perfectly unbonded, had a negligible effect on the predicted contact parameters. For a given radial clearance of 0.079 mm, the decrease in the thickness of the acetabular cup from 4.5 to 1.5 mm resulted in an increase in the contact half angle from 15° to 26°, and a decrease in the maximum contact pressure from 55 to 20 MPa. For a given acetabular cup thickness of 1.5 mm, a decrease in the radial clearance from 0.158 to 0.0395mm led to an increase in the contact half-angle from 20° to 30°, and a decrease in the maximum contact pressure from 30 to 10 MPa. For zero clearance, although the contact pressure was significantly reduced over most of the contact area, the whole acetabular cup came into contact with the femoral head, leading to stress concentration at the edge of the cup. Design optimization of the geometrical parameters, in terms of the acetabular cup thickness and the radial clearance, is important, not only to minimize the contact stress at the bearing surfaces, but also to avoid equatorial and edge contact.


2018 ◽  
Vol 18 (02) ◽  
pp. 1850018
Author(s):  
FEI LI ◽  
HEJUAN CHEN ◽  
TARO MAWATARI ◽  
YUKIHIDE IWAMOTO ◽  
FEI JIANG ◽  
...  

Finite element (FE) analysis has been used in the simulation of periacetabular osteotomy (PAO) to predict the improvement of contact pressure concentration in dysplastic hip joint. Since the cartilage layer is difficult to be segmented from CT or MRI images, most hip joint models were assumed to be a simple perfect ball and socket joint. However, the influence of different cartilage modeling methods on the reliability of the simulation has not been assessed. The objective of this study is to elucidate the influence of different cartilage modeling methods on predictions of cartilage layers’ contact pressure by FE contact analysis. In this study, the cartilage layer was generated by applying three typical kinds of modeling methods (spherical, uniform thickness, and midline-based). After comparisons with these cartilage modeling methods, the computational results demonstrate that the cartilage modeling methods have a dramatic influence on predictions of contact pressure in the PAO. The relatively continuous contact pressure distribution and lower peak contact pressure are observed in spherical cartilage modeling method. The discontinuous contact pressure distribution and higher peak contact pressure are obtained in uniform thickness and midline-based cartilage modeling methods. And the degree of discontinuous pressure distribution is even worse in the midline-based cartilage modeling method.


Sign in / Sign up

Export Citation Format

Share Document