scholarly journals Cavitation wear of Eurofer 97, Cr18Ni10Ti and 42HNM alloys

2021 ◽  
Vol 61 (6) ◽  
pp. 762-767
Author(s):  
Hanna Rostova ◽  
Victor Voyevodin ◽  
Ruslan Vasilenko ◽  
Igor Kolodiy ◽  
Vladimir Kovalenko ◽  
...  

The microstructure, hardness and cavitation wear of Eurofer 97, Cr18Ni10Ti and 42HNM have been investigated. It was revealed that the cavitation resistance of the 42HNM alloy is by an order of magnitude higher than that of the Cr18Ni10Ti steel and 16 times higher than that of the Eurofer 97 steel. Alloy 42HNM has the highest microhardness (249 kg/mm2) of all the investigated materials, which explains its high cavitation resistance. The microhardness values of the Cr18Ni10Ti steel and the Eurofer 97 were 196.2 kg/mm2 and 207.2 kg/mm2, respectively. The rate of cavitation wear of the austenitic steel Cr18Ni10Ti is 2.6 times lower than that of the martensitic Eurofer 97.

2018 ◽  
Vol 20 (4) ◽  
pp. 1700928 ◽  
Author(s):  
Niloofar Eftekhari ◽  
Abbas Zarei-Hanzaki ◽  
Amirali Shamsolhodaei ◽  
Anne-Laure Helbert ◽  
Thierry Baudin

Author(s):  
Tomasz Linek ◽  
Tomasz Tanski ◽  
Wojciech Borek

The aim of this paper was to determine the effect of surface roughness of cavitation generators made from two different materials: P265GH steel, with a ferritic-pearlitic structure, and X2CrNi18-9 (304L) steel with an austenitic structure on the mass loss and cavitation wear. Cavitation generators were tested in the conditions of cavitation wear environment continuously for 500 PMHs in a specially designed and constructed author's stream and flow device. Based on the carried out experiments was confirmed that the highest mass loss - 0.1752 g is seen for a sample of P265GH steel wet sanded with paper with the grain size of 1000. The smallest mass loss was recorded for the cavitation generator made of X2CrNi18-9 (304L) steel, sanded with sandpaper with the grain size of 2500. Certainly, the smallest number of cavitation wear effects was found for a cavitation generator made of austenitic steel X2CrNi18-9 (304L). Few places were identified based on macroscopic photographs, especially near the edges of the straight-through openings, but their number was much smaller than for the ferritic-pearlitic steel, which is associated most of all with the properties of austenitic chromium - nickel steel.


Author(s):  
W. J. Abramson ◽  
H. W. Estry ◽  
L. F. Allard

LaB6 emitters are becoming increasingly popular as direct replacements for tungsten filaments in the electron guns of modern electron-beam instruments. These emitters offer order of magnitude increases in beam brightness, and, with appropriate care in operation, a corresponding increase in source lifetime. They are, however, an order of magnitude more expensive, and may be easily damaged (by improper vacuum conditions and thermal shock) during saturation/desaturation operations. These operations typically require several minutes of an operator's attention, which becomes tedious and subject to error, particularly since the emitter must be cooled during sample exchanges to minimize damage from random vacuum excursions. We have designed a control system for LaBg emitters which relieves the operator of the necessity for manually controlling the emitter power, minimizes the danger of accidental improper operation, and makes the use of these emitters routine on multi-user instruments.Figure 1 is a block schematic of the main components of the control system, and Figure 2 shows the control box.


Author(s):  
Takao Suzuki ◽  
Hossein Nuri

For future high density magneto-optical recording materials, a Bi-substituted garnet film ((BiDy)3(FeGa)5O12) is an attractive candidate since it has strong magneto-optic effect at short wavelengths less than 600 nm. The signal in read back performance at 500 nm using a garnet film can be an order of magnitude higher than a current rare earth-transition metal amorphous film. However, the granularity and surface roughness of such crystalline garnet films are the key to control for minimizing media noise.We have demonstrated a new technique to fabricate a garnet film which has much smaller grain size and smoother surfaces than those annealed in a conventional oven. This method employs a high ramp-up rate annealing (Γ = 50 ~ 100 C/s) in nitrogen atmosphere. Fig.1 shows a typical microstruture of a Bi-susbtituted garnet film deposited by r.f. sputtering and then subsequently crystallized by a rapid thermal annealing technique at Γ = 50 C/s at 650 °C for 2 min. The structure is a single phase of garnet, and a grain size is about 300A.


Author(s):  
William Krakow

In recent years electron microscopy has been used to image surfaces in both the transmission and reflection modes by many research groups. Some of this work has been performed under ultra high vacuum conditions (UHV) and apparent surface reconstructions observed. The level of resolution generally has been at least an order of magnitude worse than is necessary to visualize atoms directly and therefore the detailed atomic rearrangements of the surface are not known. The present author has achieved atomic level resolution under normal vacuum conditions of various Au surfaces. Unfortunately these samples were exposed to atmosphere and could not be cleaned in a standard high resolution electron microscope. The result obtained surfaces which were impurity stabilized and reveal the bulk lattice (1x1) type surface structures also encountered by other surface physics techniques under impure or overlayer contaminant conditions. It was therefore decided to study a system where exposure to air was unimportant by using a oxygen saturated structure, Ag2O, and seeking to find surface reconstructions, which will now be described.


Author(s):  
G. M. Michal ◽  
T. K. Glasgow ◽  
T. J. Moore

Large additions of B to Fe-Ni alloys can lead to the formation of an amorphous structure, if the alloy is rapidly cooled from the liquid state to room temperature. Isothermal aging of such structures at elevated temperatures causes crystallization to occur. Commonly such crystallization pro ceeds by the nucleation and growth of spherulites which are spherical crystalline bodies of radiating crystal fibers. Spherulite features were found in the present study in a rapidly solidified alloy that was fully crysstalline as-cast. This alloy was part of a program to develop an austenitic steel for elevated temperature applications by strengthening it with TiB2. The alloy contained a relatively large percentage of B, not to induce an amorphous structure, but only as a consequence of trying to obtain a large volume fracture of TiB2 in the completely processed alloy. The observation of spherulitic features in this alloy is described herein. Utilization of the large range of useful magnifications obtainable in a modern TEM, when a suitably thinned foil is available, was a key element in this analysis.


Author(s):  
E. Betzig ◽  
A. Harootunian ◽  
M. Isaacson ◽  
A. Lewis

In general, conventional methods of optical imaging are limited in spatial resolution by either the wavelength of the radiation used or by the aberrations of the optical elements. This is true whether one uses a scanning probe or a fixed beam method. The reason for the wavelength limit of resolution is due to the far field methods of producing or detecting the radiation. If one resorts to restricting our probes to the near field optical region, then the possibility exists of obtaining spatial resolutions more than an order of magnitude smaller than the optical wavelength of the radiation used. In this paper, we will describe the principles underlying such "near field" imaging and present some preliminary results from a near field scanning optical microscope (NS0M) that uses visible radiation and is capable of resolutions comparable to an SEM. The advantage of such a technique is the possibility of completely nondestructive imaging in air at spatial resolutions of about 50nm.


Author(s):  
Jose-Maria Carazo ◽  
I. Benavides ◽  
S. Marco ◽  
J.L. Carrascosa ◽  
E.L. Zapata

Obtaining the three-dimensional (3D) structure of negatively stained biological specimens at a resolution of, typically, 2 - 4 nm is becoming a relatively common practice in an increasing number of laboratories. A combination of new conceptual approaches, new software tools, and faster computers have made this situation possible. However, all these 3D reconstruction processes are quite computer intensive, and the middle term future is full of suggestions entailing an even greater need of computing power. Up to now all published 3D reconstructions in this field have been performed on conventional (sequential) computers, but it is a fact that new parallel computer architectures represent the potential of order-of-magnitude increases in computing power and should, therefore, be considered for their possible application in the most computing intensive tasks.We have studied both shared-memory-based computer architectures, like the BBN Butterfly, and local-memory-based architectures, mainly hypercubes implemented on transputers, where we have used the algorithmic mapping method proposed by Zapata el at. In this work we have developed the basic software tools needed to obtain a 3D reconstruction from non-crystalline specimens (“single particles”) using the so-called Random Conical Tilt Series Method. We start from a pair of images presenting the same field, first tilted (by ≃55°) and then untilted. It is then assumed that we can supply the system with the image of the particle we are looking for (ideally, a 2D average from a previous study) and with a matrix describing the geometrical relationships between the tilted and untilted fields (this step is now accomplished by interactively marking a few pairs of corresponding features in the two fields). From here on the 3D reconstruction process may be run automatically.


2003 ◽  
Vol 112 ◽  
pp. 407-410
Author(s):  
S. A. Danilkin ◽  
M. Hölzel ◽  
H. Fuess ◽  
H. Wipf ◽  
T. J. Udovic ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document