scholarly journals FIRE DYNAMICS IN FAÇADE FIRE TESTS, Measurement, modeling and repeatability

Author(s):  
Johan Anderson ◽  
Lars Boström ◽  
Robert Jansson ◽  
Bojan Milovanović

Presented is a comparison between full-scale façade tests where SP Fire 105 and BS 8414-1 were used regarding repeatability and the use of modelling to discern changes in the set-ups. Results show that the air movements around the test set-up (the wind) may have a significant impact on the tests and that the heat exposure to the façade surface will among other depend on the thickness of the test specimen. Also demonstrated was that good results could be obtained by modelling of the façade fire tests giving us the opportunity to use these methods to determine the effect of a change in the experimental setup.

Author(s):  
Satoshi Yamada ◽  
Yuka Matsumoto ◽  
Michio Yamaguchi ◽  
Nobuyuki Ogawa ◽  
Akira Wada ◽  
...  

In this paper, a new experimental method of full scale real time shaking table test of structural element is introduced. The main feature of this experimental method is characterized by the use of the inertial loading equipment. The inertial loading equipment consists of a loading frame, a counter weight and isolators. The loading frame supported by the isolators was set on the shaking table. Specimens used in this experimental method were partial frames taken out from full scale building structures. The test set-up was composed of a specimen, the inertial loading equipment and loading beam which transmits the horizontal force to the specimen from the inertial loading equipment. This test set-up, regarded as a single degree of freedom system, makes it easy to understand the dynamic behavior of the test set-up including a specimen. Furthermore, the natural period of the experimental system corresponds to the fundamental natural period of existing building structures. So, full scale and real time dynamic loading test of partial frame can be realized. This method was developed for the existing large scale shaking table and the effectiveness has been already verified through many experiments. Further development of the experimental method adjusted to the 3-D largest shaking table under construction at present is also described.


2007 ◽  
Vol 82 (5-14) ◽  
pp. 671-676 ◽  
Author(s):  
B.S.Q. Elzendoorn ◽  
W.A. Bongers ◽  
M.F. Graswinckel ◽  
J. Jamar ◽  
O.G. Kruijt ◽  
...  
Keyword(s):  
Test Set ◽  

2014 ◽  
pp. 626-635 ◽  
Author(s):  
Florian Emerstorfer ◽  
Christer Bergwall ◽  
Walter Hein ◽  
Mats Bengtsson ◽  
John P. Jensen

The investigations presented in this work were carried out in order to further deepen the knowledge about nitrite pathways in the area of sugar beet extraction. The article consists of two parts with different experimental set-up: the first part focuses on laboratory trials in which the fate of nitrate and nitrite was studied in a so-called mini-fermenter. These trials were carried out using juice from the hot part of the cossette mixer of an Agrana sugar factory in Austria. In the experiments, two common sugar factory disinfectants were used in order to study microbial as well as microbial-chemical effects on nitrite formation and degradation caused by bacteria present in the juice. The trials demonstrated that the direct microbial effect (denitrification) on nitrite degradation is more pronounced than the indirect microbial-chemical effect coming from pH value decrease by these bacteria and subsequent nitrite loss. The second part describes the findings from laboratory experiments and full scale factory trials using a mobile laboratory set-up based on insulated stainless steel containers and spectrophotometric detection of nitrite in various factory juices. The trials were made at two Nordzucker factories located in Finland (factory A) and Sweden (factory B). The inhibiting effect of the two common sugar factory disinfectants on nitrite formation was evaluated in laboratory trials, whereas the full scale trials focused on one disinfectant. Other trials to evaluate potential contamination sources of thermophilic nitrite producing bacteria to the extraction system, reactivation of nitrite producing bacteria in raw juice and the effect of a pH gradient on bacterial nitrite activity in cossette mixer juice are also reported.


1996 ◽  
Vol 33 (1) ◽  
pp. 311-323 ◽  
Author(s):  
A. Witteborg ◽  
A. van der Last ◽  
R. Hamming ◽  
I. Hemmers

A method is presented for determining influent readily biodegradable substrate concentration (SS). The method is based on three different respiration rates, which can be measured with a continuous respiration meter which is operated in a cyclic way. Within the respiration meter nitrification is inhibited through the addition of ATU. Simulations were used to develop the respirometry set-up and decide upon the experimental design. The method was tested as part of a large measurement programme executed at a full-scale plant. The proposed respirometry set-up has been shown to be suitable for a semi-on-line determination of an influent SS which is fully based on the IAWQ #1 vision of the activated sludge process. The YH and the KS play a major role in the principle, and should be measured directly from the process.


Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 4094
Author(s):  
Imran Ali ◽  
Nam Kyeun Kim ◽  
Debes Bhattacharyya

The integration of intumescent flame-retardant (IFR) additives in natural fiber-based polymer composites enhances the fire-retardant properties, but it generally has a detrimental effect on the mechanical properties, such as tensile and flexural strengths. In this work, the feasibility of graphene as a reinforcement additive and as an effective synergist for IFR-based flax-polypropylene (PP) composites was investigated. Noticeable improvements in tensile and flexural properties were achieved with the addition of graphene nanoplatelets (GNP) in the composites. Furthermore, better char-forming ability of GNP in combination with IFR was observed, suppressing HRR curves and thus, lowering the total heat release (THR). Thermogravimetric analysis (TGA) detected a reduction in the decomposition rate due to strong interfacial bonding between GNP and PP, whereas the maximum decomposition rate was observed to occur at a higher temperature. The saturation point for the IFR additive along with GNP has also been highlighted in this study. A safe and effective method of graphene encapsulation within PP using the fume-hood set-up was achieved. Finally, the effect of flame retardant on the flax–PP composite has been simulated using Fire Dynamics Simulator.


Author(s):  
Y K Ahn ◽  
J-Y Ha ◽  
Y-H Kim ◽  
B-S Yang ◽  
M Ahmadian ◽  
...  

This paper presents an analytical and experimental analysis of the characteristics of a squeeze-type magnetorheological (MR) mount which can be used for various vibration isolation areas. The concept of the squeeze-type mount and details of the design of a squeeze-type MR mount are discussed. These are followed by a detailed description of the test set-up for evaluating the dynamic behaviour of the mount. A series of tests was conducted on the prototype mount built for this study, in order to characterize the changes occurring as a result of changing electrical current to the mount. The results of this study show that increasing electrical current to the mount, which increases the yield stress of the MR fluid, will result in an increase in both stiffness and damping of the mount. The results also show that the mount hysteresis increases with increase in current to the MR fluid, causing changes in stiffness and damping at different input frequencies.


2011 ◽  
Vol 46 (8) ◽  
pp. 528-542 ◽  
Author(s):  
D.J. Hopkin ◽  
T. Lennon ◽  
J. El-Rimawi ◽  
V. Silberschmidt
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document