The Statistical Analysis and Application of Multimedia Elements in Power Point Courseware

Author(s):  
D. M. Liang ◽  
G.Y. Zhang ◽  
H. Ma
Electronics ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1962
Author(s):  
Muhammad Hamza Zafar ◽  
Thamraa Al-shahrani ◽  
Noman Mujeeb Khan ◽  
Adeel Feroz Mirza ◽  
Majad Mansoor ◽  
...  

The most cost-effective electrical energy is produced by photovoltaic (PV) systems, and with the smallest carbon footprint, making it a sustainable renewable energy. They provide an excellent alternative to the existing fossil fuel-based energy systems, while providing 4% of global electricity demand. PV system efficiency is significantly reduced by the intrinsic non-linear model, maximum power point (MPP), and partial shading (PS) effects. These two problems cause major power loss. To devise the maximum power point tracking (MPPT) control of the PV system, a novel group teaching optimization algorithm (GTOA) based controller is presented, which effectively deals with the PS and complex partial shading (CPS) conditions. Four case studies were employed that included fast-changing irradiance, PS, and CPS to test the robustness of the proposed MPPT technique. The performance of the GTOA was compared with the latest bio-inspired techniques, i.e., dragon fly optimization (DFO), cuckoo search (CS), particle swarm optimization (PSO), particle swarm optimization gravitational search (PSOGS), and conventional perturb and observe (P&O). The GTOA tracked global MPP with the highest 99.9% efficiency, while maintaining the magnitude of the oscillation <0.5 W at global maxima (GM). Moreover, 13–35% faster tracking times, and 54% settling times were achieved, compared to existing techniques. Statistical analysis was carried out to validate the robustness and effectiveness of the GTOA. Comprehensive analytical and statistical analysis solidified the superior performance of the proposed GTOA based MPPT technique.


2021 ◽  
Vol 1 ◽  
pp. 52-55
Author(s):  
Asri Ratna Sari

This type of research is an experimental study consisting of two classes with different treatments. This study aims to determine (1) critical thinking skills of students who are taught using virtual reality-based financial literacy, (2) critical thinking abilities of students taught using power point media-based financial literacy, (3) the effect of learning using virtual reality-based financial literacy on students' critical thinking skills. The population of this study were students of class VII B as the experimental group and class 7 A as the control group, at SMP N 2 Banjarnegara in the odd semester of the 2020/2021 school year, the sample was using the simple random sampling method. The research data were analyzed using descriptive and inferential statistical analysis techniques. The results of descriptive statistical analysis are as follows: (1) The critical thinking ability of students who are taught using virtual reality-based financial literacy is in the high category with an average of 88 with a standard deviation of 12.836601 from a maximum score of 100, (2) Critical thinking skills students taught using virtual reality-based financial literacy are at an average of 66 with a standard deviation of 15.47284289. From the results of inferential statistical analysis, Fvalue <Ftable (0.6908436214 <1.85) so that H0 is rejected or there is a significant effect of learning using virtual reality-based financial literacy on students' critical thinking skills. Observations show that students are more interested in financial literacy using virtual reality because students feel the sensation of interacting with the real environment, visualizing abstract things to be easy to understand and increasing their imagination.


1966 ◽  
Vol 24 ◽  
pp. 188-189
Author(s):  
T. J. Deeming

If we make a set of measurements, such as narrow-band or multicolour photo-electric measurements, which are designed to improve a scheme of classification, and in particular if they are designed to extend the number of dimensions of classification, i.e. the number of classification parameters, then some important problems of analytical procedure arise. First, it is important not to reproduce the errors of the classification scheme which we are trying to improve. Second, when trying to extend the number of dimensions of classification we have little or nothing with which to test the validity of the new parameters.Problems similar to these have occurred in other areas of scientific research (notably psychology and education) and the branch of Statistics called Multivariate Analysis has been developed to deal with them. The techniques of this subject are largely unknown to astronomers, but, if carefully applied, they should at the very least ensure that the astronomer gets the maximum amount of information out of his data and does not waste his time looking for information which is not there. More optimistically, these techniques are potentially capable of indicating the number of classification parameters necessary and giving specific formulas for computing them, as well as pinpointing those particular measurements which are most crucial for determining the classification parameters.


Author(s):  
Gianluigi Botton ◽  
Gilles L'espérance

As interest for parallel EELS spectrum imaging grows in laboratories equipped with commercial spectrometers, different approaches were used in recent years by a few research groups in the development of the technique of spectrum imaging as reported in the literature. Either by controlling, with a personal computer both the microsope and the spectrometer or using more powerful workstations interfaced to conventional multichannel analysers with commercially available programs to control the microscope and the spectrometer, spectrum images can now be obtained. Work on the limits of the technique, in terms of the quantitative performance was reported, however, by the present author where a systematic study of artifacts detection limits, statistical errors as a function of desired spatial resolution and range of chemical elements to be studied in a map was carried out The aim of the present paper is to show an application of quantitative parallel EELS spectrum imaging where statistical analysis is performed at each pixel and interpretation is carried out using criteria established from the statistical analysis and variations in composition are analyzed with the help of information retreived from t/γ maps so that artifacts are avoided.


1979 ◽  
Vol 135 (1) ◽  
pp. 168
Author(s):  
H. William Perlis ◽  
John F. Huddleston

2001 ◽  
Vol 6 (3) ◽  
pp. 187-193 ◽  
Author(s):  
John R. Nesselroade

A focus on the study of development and other kinds of changes in the whole individual has been one of the hallmarks of research by Magnusson and his colleagues. A number of different approaches emphasize this individual focus in their respective ways. This presentation focuses on intraindividual variability stemming from Cattell's P-technique factor analytic proposals, making several refinements to make it more tractable from a research design standpoint and more appropriate from a statistical analysis perspective. The associated methods make it possible to study intraindividual variability both within and between individuals. An empirical example is used to illustrate the procedure.


1967 ◽  
Vol 12 (9) ◽  
pp. 467-467
Author(s):  
JOHN C. LOEHLIN
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document