Estimating Irrigated Agricultural Water Use through Landsat TM and a Simplified Surface Energy Balance Modeling in the Semi-arid Environments of Arizona

2012 ◽  
Vol 78 (8) ◽  
pp. 849-859 ◽  
Author(s):  
Shai Kaplan ◽  
Soe W. Myint
Water ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 632
Author(s):  
Weinan Lu ◽  
Wenxin Liu ◽  
Mengyang Hou ◽  
Yuanjie Deng ◽  
Yue Deng ◽  
...  

Improving agricultural water use efficiency (AWUE) is an important way to solve the shortage of water resources in arid and semi-arid regions. This study used the Super-DEA (data envelopment analysis) to measure the AWUE of 52 cities in Northwest China from 2000 to 2018. Based on spatial and temporal perspectives, it applied Exploratory Spatial Data Analysis (ESDA) to explore the dynamic evolution and regional differences of AWUE. A spatial econometric model was then used to analyze the main factors that influence the AWUE in Northwest China. The results showed firstly that the overall AWUE in Northwest China from 2000 to 2018 presented a steady upward trend. However, only a few cities achieved effective agricultural water usage by 2018, and the differences among cities were obvious. Secondly, AWUE showed an obvious spatial autocorrelation in Northwest China and showed significant high–high and low–low agglomeration characteristics. Thirdly, economic growth, urbanization development, and effective irrigation have significant, positive effects on AWUE, while per capita water resource has a significant, negative influence. Finally, when improving the AWUE in arid and semi-arid regions, plans should be formulated according to local conditions. The results of this study can provide new ideas on the study of AWUE in arid and semi-arid regions and provide references for the formulation of regional agricultural water resource utilization policies as well.


2016 ◽  
Vol 16 (6) ◽  
pp. 1497-1513
Author(s):  
Shereif H. Mahmoud ◽  
A. A. Alazba

Spatiotemporal distributions of water consumption for various land use-cover types over the Eastern province of Saudi Arabia were estimated using Surface Energy Balance Algorithm. Water consumption of various land use and cover classes shows similar seasonal dynamic trends. The spatial distribution of annual actual evapotranspiration (AET) shows low values in the Empty Quarter (231–438 mm/yr), and moderate values in the Eastern Province borders (439–731 mm/yr). Very high AET values were observed in irrigated croplands in the Northern plains, Hafar Al-Batin, the central coastal lowlands, and the southern coastal lowlands, where annual AET ranged from 732 to 1,790 mm/yr, representing the majority of the study area agricultural land. Evaporative behavior of land use-cover types indicated that irrigated cropland, which occupies 0.37% of the study area, has an average daily AET ranging from 9.2 mm/day in January to a maximum value in April (30 mm/day). Average annual water use by irrigated cropland is relatively very high and it is roughly 1,786.9 mm/yr, while water bodies, which cover 0.023% (121.2 km2) of the study area, also had relatively high mean AET (660.8 mm/yr). Overall, AET rates for irrigated cropland are much higher than for other land uses.


2014 ◽  
Vol 18 (3) ◽  
pp. 1165-1188 ◽  
Author(s):  
J. Chirouze ◽  
G. Boulet ◽  
L. Jarlan ◽  
R. Fieuzal ◽  
J. C. Rodriguez ◽  
...  

Abstract. Instantaneous evapotranspiration rates and surface water stress levels can be deduced from remotely sensed surface temperature data through the surface energy budget. Two families of methods can be defined: the contextual methods, where stress levels are scaled on a given image between hot/dry and cool/wet pixels for a particular vegetation cover, and single-pixel methods, which evaluate latent heat as the residual of the surface energy balance for one pixel independently from the others. Four models, two contextual (S-SEBI and a modified triangle method, named VIT) and two single-pixel (TSEB, SEBS) are applied over one growing season (December–May) for a 4 km × 4 km irrigated agricultural area in the semi-arid northern Mexico. Their performance, both at local and spatial standpoints, are compared relatively to energy balance data acquired at seven locations within the area, as well as an uncalibrated soil–vegetation–atmosphere transfer (SVAT) model forced with local in situ data including observed irrigation and rainfall amounts. Stress levels are not always well retrieved by most models, but S-SEBI as well as TSEB, although slightly biased, show good performance. The drop in model performance is observed for all models when vegetation is senescent, mostly due to a poor partitioning both between turbulent fluxes and between the soil/plant components of the latent heat flux and the available energy. As expected, contextual methods perform well when contrasted soil moisture and vegetation conditions are encountered in the same image (therefore, especially in spring and early summer) while they tend to exaggerate the spread in water status in more homogeneous conditions (especially in winter). Surface energy balance models run with available remotely sensed products prove to be nearly as accurate as the uncalibrated SVAT model forced with in situ data.


2019 ◽  
Vol 14 (4) ◽  
pp. 044016 ◽  
Author(s):  
Zhongming Gao ◽  
Heping Liu ◽  
Justine E C Missik ◽  
Jingyu Yao ◽  
Maoyi Huang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document