Damage Progression in Concrete Using Acoustic Emission Test through Convex Hull Visualization

2016 ◽  
Vol 113 (6) ◽  
Author(s):  
Jason Maximino C. Ongpeng ◽  
Andres Winston C. Oreta ◽  
Sohichi Hirose
2006 ◽  
Vol 13-14 ◽  
pp. 117-124 ◽  
Author(s):  
James J. Hensman ◽  
C.V. Cristodaro ◽  
Gareth Pierce ◽  
Keith Worden

An acoustic emission test was simulated using a three point bend specimen and an artificial AE source. Waveform data was recorded as the sample was cyclically loaded in three point bending, and the cross correlation coefficient of the waveforms was used to measure the repeatability of the test. Results were twofold: the stress state of a specimen affects the ultrasonic propagation therein; and the coupling condition of a transducer may not remain constant during a test.


2012 ◽  
Vol 445 ◽  
pp. 917-922 ◽  
Author(s):  
Saman Davoodi ◽  
Amir Mostafapour

Leak detection is one of the most important problems in the oil and gas pipelines. Where it can lead to financial losses, severe human and environmental impacts. Acoustic emission test is a new technique for leak detection. Leakage in high pressure pipes creates stress waves resulting from localized loss of energy. Stress waves are transmitted through the pipe wall which will be recorded by using acoustic sensor or accelerometer installed on the pipe wall. Knowledge of how the pipe wall vibrates by acoustic emission resulting from leakage is a key parameter for leak detection and location. In this paper, modeling of pipe vibration caused by acoustic emission generated by escaping of fluid has been done. Donnells non linear theory for cylindrical shell is used to deriving of motion equation and simply supported boundary condition is considered. By using Galerkin method, the motion equation has been solved and a system of non linear equations with 6 degrees of freedom is obtained. To solve these equations, ODE tool of MATLAB software and Rung-Kuta numerical method is used and pipe wall radial displacement is obtained. For verification of this theory, acoustic emission test with continues leak source has been done. Vibration of wall pipe was recorded by using acoustic emission sensors. For better analysis, Fast Fourier Transform (FFT) was taken from theoretical and experimental results. By comparing the results, it is found that the range of frequencies which carried the most amount of energy is same which expresses the affectivity of the model.


2019 ◽  
Vol 208 ◽  
pp. 141-149 ◽  
Author(s):  
Wenfeng Hao ◽  
Zengrui Yuan ◽  
Can Tang ◽  
Lu Zhang ◽  
Guoqi Zhao ◽  
...  

2011 ◽  
Vol 378-379 ◽  
pp. 43-46 ◽  
Author(s):  
Tao Xie ◽  
Qing Hui Jiang ◽  
Rui Chen ◽  
Wei Zhang

With RMT-150C rock testing machine and AEWIN E1.86 DISP acoustic emission system applied, the acoustic emission test was accomplished with two kinds of rock samples including marble and granite under uniaxial compression. Cyclic loading and continuous loading were used through the experiment, and the mechanical performance and acoustic emission (AE) characteristics were obtained during the process of rock progressive failure. Details related to the relationship between amount of AE and stress-strain was given in this paper. A comparison between marble and granite was made as well following the general AE law, on the basis of which, the failure mechanism of rock mass was investigated. Finally, some conclusions can be summarized as follows:(1) AE activity features are different with stress state variation in rock failure process;(2) loading patterns make a direct impact on the failure process thereby affecting AE activities;(3)AE activities are various basing on the different types of rocks, structures and failure modes.


2010 ◽  
Vol 638-642 ◽  
pp. 558-563
Author(s):  
Nuno Eduardo Dias Gueiral ◽  
Elisabete Maria da Silva Marques Nogueira ◽  
Antonio Manuel de Amaral Monteiro Ramos

One the mechanisms of failure in total hip arthroplasty in cemented prosthesis is cement fatigue. The main objective of this work is to use Acoustic Emission (AE) as a non-destructive and non-intrusive monitoring test in a cemented prosthesis. The femoral component was sinusoidally loading in a fatigue machine. Experimental data collected during acoustic emission test was treated and analysed by Wavelet Transform and allowed to locate a crack in cement mantle of femoral component. Other complementary diagnostic tests were used to confirm the existence of a fault (crack). One of them was penetrating liquids in different cut sections of femoral component. The other one was microscopic analysis that allowed observing the existence of a crack which location is pointed out by the results of AE answer. The AE sources locations are situated inside the crack observed in the optical microscope. The Wavelet Transform (WT) AE signals demonstrated the accuracy of damage location in bone cement and thus becoming useful in other orthopedics studies.


2012 ◽  
Vol 594-597 ◽  
pp. 376-379 ◽  
Author(s):  
S C. Xu ◽  
B R. Chen ◽  
C Y. Jin

In this paper, a series of true triaxial tests indoor with acoustic emission mornitoring were conducted and the characteristics of acoustic emission rate and energy releasing rate in the section adjacent to failure were gained. According to the different characteristics of acoustic emission rate, we divided the events rate into three types which were main shock, foreshock-main shock and cluster shocks. And then, a prediction method for hard rock was put forward according to different events rate types based on the trends of AE signals in the section adjacent to failure for hard rock.


Sign in / Sign up

Export Citation Format

Share Document