scholarly journals Maximum likelihood estimation based on type-i hybrid progressive censored competing risks data

Author(s):  
Samir Ashour ◽  
Wael Abu El Azm

<p>This paper is concerned with the estimators problems of the generalized Weibull distribution based on Type-I hybrid progressive censoring scheme (Type-I PHCS) in the presence of competing risks when the cause of failure of each item is known. Maximum likelihood estimates and the corresponding Fisher information matrix are obtained. We generalized Kundu and Joarder [7] results in the case of the exponential distribution while, the corresponding results in the case of the generalized exponential and Weibull distributions may be obtained as a special cases. A real data set is used to illustrate the theoretical results.</p>

Entropy ◽  
2019 ◽  
Vol 21 (5) ◽  
pp. 510
Author(s):  
Bo Peng ◽  
Zhengqiu Xu ◽  
Min Wang

We introduce a new three-parameter lifetime distribution, the exponentiated Lindley geometric distribution, which exhibits increasing, decreasing, unimodal, and bathtub shaped hazard rates. We provide statistical properties of the new distribution, including shape of the probability density function, hazard rate function, quantile function, order statistics, moments, residual life function, mean deviations, Bonferroni and Lorenz curves, and entropies. We use maximum likelihood estimation of the unknown parameters, and an Expectation-Maximization algorithm is also developed to find the maximum likelihood estimates. The Fisher information matrix is provided to construct the asymptotic confidence intervals. Finally, two real-data examples are analyzed for illustrative purposes.


Symmetry ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1297
Author(s):  
Guillermo Martínez-Flórez ◽  
Heleno Bolfarine ◽  
Yolanda M. Gómez

In this paper, the skew-elliptical sinh-alpha-power distribution is developed as a natural follow-up to the skew-elliptical log-linear Birnbaum–Saunders alpha-power distribution, previously studied in the literature. Special cases include the ordinary log-linear Birnbaum–Saunders and skewed log-linear Birnbaum–Saunders distributions. As shown, it is able to surpass the ordinary sinh-normal models when fitting data sets with high (above the expected with the sinh-normal) degrees of asymmetry. Maximum likelihood estimation is developed with the inverse of the observed information matrix used for standard error estimation. Large sample properties of the maximum likelihood estimators such as consistency and asymptotic normality are established. An application is reported for the data set previously analyzed in the literature, where performance of the new distribution is shown when compared with other proposed alternative models.


Author(s):  
Samuel U. Enogwe ◽  
Chisimkwuo John ◽  
Happiness O. Obiora-Ilouno ◽  
Chrisogonus K. Onyekwere

In this paper, we propose a new lifetime distribution called the generalized weighted Rama (GWR) distribution, which extends the two-parameter Rama distribution and has the Rama distribution as a special case. The GWR distribution has the ability to model data sets that have positive skewness and upside-down bathtub shape hazard rate. Expressions for mathematical and reliability properties of the GWR distribution have been derived. Estimation of parameters was achieved using the method of maximum likelihood estimation and a simulation was performed to verify the stability of the maximum likelihood estimates of the model parameters. The asymptotic confidence intervals of the parameters of the proposed distribution are obtained. The applicability of the GWR distribution was illustrated with a real data set and the results obtained show that the GWR distribution is a better candidate for the data than the other competing distributions being investigated.


2019 ◽  
Vol 8 (6) ◽  
pp. 1
Author(s):  
Fastel Chipepa ◽  
Broderick O. Oluyede ◽  
Boikanyo Makubate

A new family of distributions, namely the Kumaraswamy Odd Lindley-G distribution is developed. The new density function can be expressed as a linear combination of exponentiated-G densities. Statistical properties of the new family including hazard rate and quantile functions, moments and incomplete moments, Bonferroni and Lorenz curves, distribution of order statistics and R&acute;enyi entropy are derived. Some special cases are presented. We conduct some Monte Carlo simulations to examine the consistency of the maximum likelihood estimates. We provide an application of KOL-LLo distribution to a real data set.


2020 ◽  
Vol 9 (1) ◽  
pp. 61-81
Author(s):  
Lazhar BENKHELIFA

A new lifetime model, with four positive parameters, called the Weibull Birnbaum-Saunders distribution is proposed. The proposed model extends the Birnbaum-Saunders distribution and provides great flexibility in modeling data in practice. Some mathematical properties of the new distribution are obtained including expansions for the cumulative and density functions, moments, generating function, mean deviations, order statistics and reliability. Estimation of the model parameters is carried out by the maximum likelihood estimation method. A simulation study is presented to show the performance of the maximum likelihood estimates of the model parameters. The flexibility of the new model is examined by applying it to two real data sets.


2020 ◽  
Vol 15 (4) ◽  
pp. 2481-2510
Author(s):  
Fastel Chipepa ◽  
Divine Wanduku ◽  
Broderick Olusegun Oluyede

A new flexible and versatile generalized family of distributions, namely, half logistic odd Weibull-Topp-Leone-G (HLOW-TL-G) distribution is presented. The distribution can be traced back to the exponentiated-G distribution. We derive the statistical properties of the proposed family of distributions. Maximum likelihood estimates of the HLOW-TL-G family of distributions are also presented. Five special cases of the proposed family are presented. A simulation study and real data applications on one of the special cases are also presented


Author(s):  
Arun Kumar Chaudhary ◽  
Vijay Kumar

In this study, we have introduced a three-parameter probabilistic model established from type I half logistic-Generating family called half logistic modified exponential distribution. The mathematical and statistical properties of this distribution are also explored. The behavior of probability density, hazard rate, and quantile functions are investigated. The model parameters are estimated using the three well known estimation methods namely maximum likelihood estimation (MLE), least-square estimation (LSE) and Cramer-Von-Mises estimation (CVME) methods. Further, we have taken a real data set and verified that the presented model is quite useful and more flexible for dealing with a real data set. KEYWORDS— Half-logistic distribution, Estimation, CVME ,LSE, , MLE


2020 ◽  
Vol 42 ◽  
pp. e111
Author(s):  
Ana Carla Percontini ◽  
Frank Gomes-Silva ◽  
Gauss Moutinho Crdeiro ◽  
Pedro Rafael Marinho

We define a new class of distributions with one extra shapeparameter including some special cases. We provide numerical and computational aspects of the new class. We proposefunctions using the \textsf{R} language to fit any distribution in this family to a data set. In addition, such functions are implemented efficientlyusing the library \textsf{Rcpp} that enables the incorporation of the codes \textsf{C++} in \textsf{R} automatically. Some examples are presentedfor using the implemented routines in practice. We derive some mathematical properties of this class including explicit expressionsfor the moments, generating function and mean deviations. We discuss the estimation of the model parametersby maximum likelihood and provide an application to a real data set.


2011 ◽  
Vol 83 (2) ◽  
pp. 357-373 ◽  
Author(s):  
Gauss M Cordeiro ◽  
Alexandre B Simas ◽  
Borko D Stošic

The beta Weibull distribution was first introduced by Famoye et al. (2005) and studied by these authors and Lee et al. (2007). However, they do not give explicit expressions for the moments. In this article, we derive explicit closed form expressions for the moments of this distribution, which generalize results available in the literature for some sub-models. We also obtain expansions for the cumulative distribution function and Rényi entropy. Further, we discuss maximum likelihood estimation and provide formulae for the elements of the expected information matrix. We also demonstrate the usefulness of this distribution on a real data set.


Mathematics ◽  
2020 ◽  
Vol 8 (5) ◽  
pp. 703
Author(s):  
David Elal-Olivero ◽  
Juan F. Olivares-Pacheco ◽  
Osvaldo Venegas ◽  
Heleno Bolfarine ◽  
Héctor W. Gómez

The main object of this paper is to develop an alternative construction for the bimodal skew-normal distribution. The construction is based upon a study of the mixture of skew-normal distributions. We study some basic properties of this family, its stochastic representations and expressions for its moments. Parameters are estimated using the maximum likelihood estimation method. A simulation study is carried out to observe the performance of the maximum likelihood estimators. Finally, we compare the efficiency of the new distribution with other distributions in the literature using a real data set. The study shows that the proposed approach presents satisfactory results.


Sign in / Sign up

Export Citation Format

Share Document