Half Logistic Odd Weibull-Topp-Leone-G Family of Distributions: Model, Properties and Applications

2020 ◽  
Vol 15 (4) ◽  
pp. 2481-2510
Author(s):  
Fastel Chipepa ◽  
Divine Wanduku ◽  
Broderick Olusegun Oluyede

A new flexible and versatile generalized family of distributions, namely, half logistic odd Weibull-Topp-Leone-G (HLOW-TL-G) distribution is presented. The distribution can be traced back to the exponentiated-G distribution. We derive the statistical properties of the proposed family of distributions. Maximum likelihood estimates of the HLOW-TL-G family of distributions are also presented. Five special cases of the proposed family are presented. A simulation study and real data applications on one of the special cases are also presented

2021 ◽  
Vol 16 (3) ◽  
pp. 2819-2941
Author(s):  
Fastel Chipepa ◽  
Broderick Oluyede ◽  
Boikanyo Makubate

We propose a new generalized class of distributions called the odd Lindley-G Power Series (OL-GPS) family of distributions and a special class, namely, odd Lindley-Weibull power series (OL-WPS) family of distributions. We also derive the structural properties of the OL-GPS family of distributions including moments, order statistics, Rényi entropy, mean and median deviations, Bonferroni and Lorenz curves, and maximum likelihood estimates. Sub-models of the special cases were also obtained together with their structural properties. A simulation study to examine the consistency of the maximum likelihood estimators for each parameter is presented. Finally, real data examples are presented to illustrate the applicability and usefulness of the proposed model


2019 ◽  
Vol 56 (2) ◽  
pp. 185-210 ◽  
Author(s):  
Abraão D. C. Nascimento ◽  
Kássio F. Silva ◽  
Gauss M. Cordeiro ◽  
Morad Alizadeh ◽  
Haitham M. Yousof ◽  
...  

Abstract We study some mathematical properties of a new generator of continuous distributions called the Odd Nadarajah-Haghighi (ONH) family. In particular, three special models in this family are investigated, namely the ONH gamma, beta and Weibull distributions. The family density function is given as a linear combination of exponentiated densities. Further, we propose a bivariate extension and various characterization results of the new family. We determine the maximum likelihood estimates of ONH parameters for complete and censored data. We provide a simulation study to verify the precision of these estimates. We illustrate the performance of the new family by means of a real data set.


2019 ◽  
Vol 8 (6) ◽  
pp. 1
Author(s):  
Fastel Chipepa ◽  
Broderick O. Oluyede ◽  
Boikanyo Makubate

A new family of distributions, namely the Kumaraswamy Odd Lindley-G distribution is developed. The new density function can be expressed as a linear combination of exponentiated-G densities. Statistical properties of the new family including hazard rate and quantile functions, moments and incomplete moments, Bonferroni and Lorenz curves, distribution of order statistics and R´enyi entropy are derived. Some special cases are presented. We conduct some Monte Carlo simulations to examine the consistency of the maximum likelihood estimates. We provide an application of KOL-LLo distribution to a real data set.


2021 ◽  
Vol 16 (3) ◽  
pp. 2825-2949
Author(s):  
Fastel Chipepa ◽  
Broderick Oludeye ◽  
Boikanyo Makubate

We propose a new generalized class of distributions called the odd Lindley-G Power Series (OL-GPS) family of distributions and a special class, namely, odd Lindley-Weibull power series (OL-WPS) family of distributions. We also derive the structural properties of the OL-GPS family of distributions including moments, order statistics, Rényi entropy, mean and median deviations, Bonferroni and Lorenz curves, and maximum likelihood estimates. Sub-models of the special cases were also obtained together with their structural properties. A simulation study to examine the consistency of the maximum likelihood estimators for each parameter is presented. Finally, real data examples are presented to illustrate the applicability and usefulness of the proposed model


Stats ◽  
2018 ◽  
Vol 1 (1) ◽  
pp. 32-47
Author(s):  
Gauss Cordeiro ◽  
Maria de Lima ◽  
Edwin Ortega ◽  
Adriano Suzuki

We propose an extended fatigue lifetime model called the odd log-logistic Birnbaum–Saunders–Poisson distribution, which includes as special cases the Birnbaum–Saunders and odd log-logistic Birnbaum–Saunders distributions. We obtain some structural properties of the new distribution. We define a new extended regression model based on the logarithm of the odd log-logistic Birnbaum–Saunders–Poisson random variable. For censored data, we estimate the parameters of the regression model using maximum likelihood. We investigate the accuracy of the maximum likelihood estimates using Monte Carlo simulations. The importance of the proposed models, when compared to existing models, is illustrated by means of two real data sets.


Author(s):  
Fastel Chipepa ◽  
Boikanyo Makubate ◽  
Broderick Oluyede ◽  
Kethamile Rannona

We present a new class of distributions called the Topp-Leone-G Power Series (TL-GPS) class of distributions. This model is obtained by compounding the Topp-Leone-G distribution with the power series distribution. Statistical prop- erties of the TL-GPS class of distributions are obtained. Maximum likelihood estimates for the proposed model were obtained. A simulation study is carried out for the special case of Topp-Leone Log-Logistic Poisson distribution to assess the performance of the maximum likelihood estimates. Finally, we apply Topp-Leone-log-logistic Poisson distribution to real data sets to illustrate the usefulness and applicability of the proposed class of distributions.


2019 ◽  
Vol 8 (6) ◽  
pp. 51 ◽  
Author(s):  
Ahmad Alzaghal ◽  
Duha Hamed

In this paper, we propose new families of generalized Lomax distributions named T-LomaxfYg. Using the methodology of the Transformed-Transformer, known as T-X framework, the T-Lomax families introduced are arising from the quantile functions of exponential, Weibull, log-logistic, logistic, Cauchy and extreme value distributions. Various structural properties of the new families are derived including moments, modes and Shannon entropies. Several new generalized Lomax distributions are studied. The shapes of these T-LomaxfYg distributions are very flexible and can be symmetric, skewed to the right, skewed to the left, or bimodal. The method of maximum likelihood is proposed for estimating the distributions parameters and a simulation study is carried out to assess its performance. Four applications of real data sets are used to demonstrate the flexibility of T-LomaxfYg family of distributions in fitting unimodal and bimodal data sets from di erent disciplines.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
E. Sandhya ◽  
C. B. Prasanth

We introduce and characterize a new family of distributions, Marshall-Olkin discrete uniform distribution. The natures of hazard rate, entropy, and distribution of minimum of sequence of i.i.d. random variables are derived. First order autoregressive (AR (1)) model with this distribution for marginals is considered. The maximum likelihood estimates for the parameters are found out. Also, the goodness of the distribution is tested with real data.


2021 ◽  
Vol 71 (1) ◽  
pp. 211-234
Author(s):  
Boikanyo Makubate ◽  
Thatayaone Moakofi ◽  
Broderick Oluyede

Abstract We propose a new generalized class of distributions called Lindley-Weibull Power Series (LWPS) distributions and their special case called Lindley-Weibull logarithmic (LWL) distributions. Structural properties of the LWPS class of distributions and its sub-model LWL distribution including moments, order statistics, Rényi entropy, mean and median deviations, Bonferroni and Lorenz curves, and maximum likelihood estimates are derived. A simulation study to examine the bias and mean square error of the maximum likelihood estimators for each parameter is presented. Finally, real data examples are presented to illustrate the applicability and usefulness of the proposed class of distributions.


Author(s):  
Ibrahim Elbatal

In this work, a new extension of the Inverse Rayleigh model is proposed and studied. We derive some of its fundamental properties. We assess the performance of the maximum likelihood estimators via a simulation study. The importance of the new model is shown via two applications to real data sets. The new model is better fit than other important competitive models based on two real data sets.


Sign in / Sign up

Export Citation Format

Share Document