A Novel S-Regression Model on an Auto Price
A simple linear regression model is useful in a prediction model. A general linear regression beyond a single independent variable is still not popular. A nonlinear regression can be easily produced a better predictive model but it is difficult to construct. The objective of this paper is to propose a technique for predicting the price of used cars in Malaysia using S-shaped curve model. In this paper, the S-shaped Membership Function [SMF] is used as the basis to develop a novel S-Regression model. Comparisons between linear regression, cubic regression and S-Regression have been made on the used car prices. The mean squared error of S-Regression model is found to be closer to cubic regression than the linear regression. S-Regression model is found to be quite suitable to represent the relationship between the price of a used car and the make year of a car. The result demonstrates that the S-Regression model gives better and practical estimate of the price of a used car in Malaysia.