scholarly journals Outdoor Illegal Parking Detection System Using Convolutional Neural Network on Raspberry Pi

2018 ◽  
Vol 7 (3.7) ◽  
pp. 17
Author(s):  
Chin Kit Ng ◽  
Soon Nyean Cheong ◽  
Wen Wen-Jiun Yap ◽  
Yee Loo Foo

This paper proposes a cost-effective vision-based outdoor illegal parking detection system, iConvPark, to automatize the detection of illegally parked vehicles by providing real-time notification regarding the occurrences and locations of illegal parking cases, thereby improving effectiveness of parking rules and regulations enforcement. The iConvPark is implemented on a Raspberry Pi with the use of Convolutional Neural Network as the classifier to identify illegally parked vehicles based on live parking lot image retrieved via an IP camera. The system has been implemented at a university parking lot to detect illegal parking events. Evaluation results show that our proposed system is capable of detecting illegally parked vehicles with precision rate of 1.00 and recall rate of 0.94, implying that the detection is robust against changes in light intensity and the presence of shadow effects under different weather conditions, attributed to the superiority offered by CNN.  

2019 ◽  
Vol 8 (2) ◽  
pp. 4605-4613

This Raspberry Pi Single Board Computer-Based Cataract Detection System using Deep Convolutional Neural Network through GoogLeNet Transfer Learning and MATLAB digital image processing paradigm based on Lens Opacities Classification System III with Python application, which would capture the image of the eyes of cataract patients to detect the type of cataract without using dilating drops. Additionally, the system could also determine the severity, grade, color or area, and hardness of cataract. It would also display, save, search and print the partial diagnosis that can be done to the patients. Descriptive quantitative research, Waterfall System Development Life Cycle and Evolutionary Prototyping Models was used as the methodologies of this study. Cataract patients and ophthalmologists of one of the eye clinics in City of Biñan, Laguna, as well as engineers and information technology professionals tested the system and also served as respondents to the conducted survey. Obtained results indicated that the detection of cataract and its characteristics using the system were accurate and reliable, which has a significant difference from the current eye examination for cataract. Generally, this would be a modern cataract detection system for all Cataract patients


2018 ◽  
Vol 173 ◽  
pp. 03080
Author(s):  
Zhi Zhang ◽  
Liang Guo ◽  
Xianguang Dong ◽  
Yanjie Dai ◽  
Yan Du

As diversity of electro-data anomaly, the methods based on artificial feature are becoming more difficult to detect anomalies among a great deal of electro-data. Hence, this paper proposes a novel method which is based on deep convolutional neural network (DCNN) to detect anomaly electro-data. This method models the sample data with time information and electrical parameters, and labels them as normal or abnormal automatically. Further, the paper improves the designing DCNN to extract precise features from large scale of electro-data to get high accuracy. The results of the case analysis show that our method can detect anomaly electro-data more exact and stable than the traditional methods. The abnormal precision rate and abnormal recall rate of our approach reach 92.7% and 91.3% respectively.


Face detection is an important process when it comes to computer vision. It will serve as an input to a Facial expression and Face recognition system. Modern “C.C.T.V” cameras with face detection features are costly and only few are connected to the internet. This paper proposes a Face detection system which detects faces with a fusion of Convolutional neural network and Gabor Filter. Gabor filter is used to extract important facial features and Convolutional neural network is used to train the model. Model weights files are executed in Raspberry PI which is cost efficient. Raspberry pi is connected to cloud service which will alert the user with SMS and E-mail.


2021 ◽  
pp. 1-10
Author(s):  
Chien-Cheng Leea ◽  
Zhongjian Gao ◽  
Xiu-Chi Huanga

This paper proposes a Wi-Fi-based indoor human detection system using a deep convolutional neural network. The system detects different human states in various situations, including different environments and propagation paths. The main improvements proposed by the system is that there is no cameras overhead and no sensors are mounted. This system captures useful amplitude information from the channel state information and converts this information into an image-like two-dimensional matrix. Next, the two-dimensional matrix is used as an input to a deep convolutional neural network (CNN) to distinguish human states. In this work, a deep residual network (ResNet) architecture is used to perform human state classification with hierarchical topological feature extraction. Several combinations of datasets for different environments and propagation paths are used in this study. ResNet’s powerful inference simplifies feature extraction and improves the accuracy of human state classification. The experimental results show that the fine-tuned ResNet-18 model has good performance in indoor human detection, including people not present, people still, and people moving. Compared with traditional machine learning using handcrafted features, this method is simple and effective.


Plants ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 31
Author(s):  
Jia-Rong Xiao ◽  
Pei-Che Chung ◽  
Hung-Yi Wu ◽  
Quoc-Hung Phan ◽  
Jer-Liang Andrew Yeh ◽  
...  

The strawberry (Fragaria × ananassa Duch.) is a high-value crop with an annual cultivated area of ~500 ha in Taiwan. Over 90% of strawberry cultivation is in Miaoli County. Unfortunately, various diseases significantly decrease strawberry production. The leaf and fruit disease became an epidemic in 1986. From 2010 to 2016, anthracnose crown rot caused the loss of 30–40% of seedlings and ~20% of plants after transplanting. The automation of agriculture and image recognition techniques are indispensable for detecting strawberry diseases. We developed an image recognition technique for the detection of strawberry diseases using a convolutional neural network (CNN) model. CNN is a powerful deep learning approach that has been used to enhance image recognition. In the proposed technique, two different datasets containing the original and feature images are used for detecting the following strawberry diseases—leaf blight, gray mold, and powdery mildew. Specifically, leaf blight may affect the crown, leaf, and fruit and show different symptoms. By using the ResNet50 model with a training period of 20 epochs for 1306 feature images, the proposed CNN model achieves a classification accuracy rate of 100% for leaf blight cases affecting the crown, leaf, and fruit; 98% for gray mold cases, and 98% for powdery mildew cases. In 20 epochs, the accuracy rate of 99.60% obtained from the feature image dataset was higher than that of 1.53% obtained from the original one. This proposed model provides a simple, reliable, and cost-effective technique for detecting strawberry diseases.


Sensors ◽  
2018 ◽  
Vol 18 (7) ◽  
pp. 2327 ◽  
Author(s):  
Jinsong Zhang ◽  
Wenjie Xing ◽  
Mengdao Xing ◽  
Guangcai Sun

In recent years, terahertz imaging systems and techniques have been developed and have gradually become a leading frontier field. With the advantages of low radiation and clothing-penetrable, terahertz imaging technology has been widely used for the detection of concealed weapons or other contraband carried on personnel at airports and other secure locations. This paper aims to detect these concealed items with deep learning method for its well detection performance and real-time detection speed. Based on the analysis of the characteristics of terahertz images, an effective detection system is proposed in this paper. First, a lots of terahertz images are collected and labeled as the standard data format. Secondly, this paper establishes the terahertz classification dataset and proposes a classification method based on transfer learning. Then considering the special distribution of terahertz image, an improved faster region-based convolutional neural network (Faster R-CNN) method based on threshold segmentation is proposed for detecting human body and other objects independently. Finally, experimental results demonstrate the effectiveness and efficiency of the proposed method for terahertz image detection.


Energies ◽  
2018 ◽  
Vol 11 (8) ◽  
pp. 2097 ◽  
Author(s):  
Chenhua Ni ◽  
Xiandong Ma

Successful development of a marine wave energy converter (WEC) relies strongly on the development of the power generation device, which needs to be efficient and cost-effective. An innovative multi-input approach based on the Convolutional Neural Network (CNN) is investigated to predict the power generation of a WEC system using a double-buoy oscillating body device (OBD). The results from the experimental data show that the proposed multi-input CNN performs much better at predicting results compared with the conventional artificial network and regression models. Through the power generation analysis of this double-buoy OBD, it shows that the power output has a positive correlation with the wave height when it is higher than 0.2 m, which becomes even stronger if the wave height is higher than 0.6 m. Furthermore, the proposed approach associated with the CNN algorithm in this study can potentially detect the changes that could be due to presence of anomalies and therefore be used for condition monitoring and fault diagnosis of marine energy converters. The results are also able to facilitate controlling of the electricity balance among energy conversion, wave power produced and storage.


2020 ◽  
Author(s):  
Sriram Srinivasan ◽  
Shashank A ◽  
vinayakumar R ◽  
Soman KP

In the present era, cyberspace is growing tremendously and the intrusion detection system (IDS) plays a key role in it to ensure information security. The IDS, which works in network and host level, should be capable of identifying various malicious attacks. The job of network-based IDS is to differentiate between normal and malicious traffic data and raise an alert in case of an attack. Apart from the traditional signature and anomaly-based approaches, many researchers have employed various deep learning (DL) techniques for detecting intrusion as DL models are capable of extracting salient features automatically from the input data. The application of deep convolutional neural network (DCNN), which is utilized quite often for solving research problems in image processing and vision fields, is not explored much for IDS. In this paper, a DCNN architecture for IDS which is trained on KDDCUP 99 data set is proposed. This work also shows that the DCNN-IDS model performs superior when compared with other existing works.


Sign in / Sign up

Export Citation Format

Share Document