scholarly journals Experimental Investigation on Self-Compacting Concrete with Waste Carbon Black

2018 ◽  
Vol 7 (4.20) ◽  
pp. 414
Author(s):  
Wajde Shober Saheb Alyhya ◽  
Shober Saheb Alyhya Alaa Abed Alameer ◽  
Laith Mohammed Ridha Mahmmod ◽  
. .

One of the vital aspects in designing self-compacting concrete (SCC) is the amount and type of filler with respect to cement and water. These have a great impact not only on fresh SCC properties (segregation, filling, fluidity, etc.) but also on its hardened properties. In this experimental study, an attempt was conducted to diminish the pores occurrence in SCC by using carbon black as a filler, which is a waste from the rubber industry. The experimental work investigates the SCC properties when crusher dust filler from the aggregate plant was partially replaced by waste carbon black. SCC mixes of two carbon black replacement ratios (2.5% and 5%) were studied to reveal its effect on the fresh and hardened properties, through various tests. The fresh properties were investigated by means of slump flow (t500), J-ring and L-box. The compressive and splitting tensile strengths tests were implemented along with the mix density evaluation to characterize the hardened properties of SCC with black carbon. It has been found that the carbon black has a useful role for the fresh properties of SCC. Indeed, the carbon black provides superior performance for the compressive strength development than crusher dust. In contrast, it slightly worsened SCC splitting tensile strength.   

2020 ◽  
Author(s):  
M. Arun Kumar ◽  
R. Magesh ◽  
S. Selvapraveen ◽  
M. Vignesh

2018 ◽  
Vol 877 ◽  
pp. 248-253
Author(s):  
Thete Swapnil Tanajirao ◽  
D. Arpitha ◽  
Suman Saha ◽  
C. Rajasekaran

Large quantity of the quarry dust gets produced annually in the quarries during the extraction of the crushed coarse aggregate. As a result, disposal problems of this material gain significant momentum as these disturb environmental systems also. Now-a-days many of the countries like India is facing problems of ban on the extraction of sand and lacunae in procuring of fine aggregate, which is important constituent of the concrete. To overcome this problem, present study is focused on the suitability to utilize the quarry dust in Self Compacting Concrete (SCC) partially as fine aggregate with the natural fine aggregates. In this work, quarry dust is used as replacement of sand in a different level (0%, 15%, 30%, 45% and 60%) for producing the SCC. Fresh properties such as slump flow and V-funnel time have been measured for all mixes and hardened properties as compressive strength, splitting tensile strength and flexural strength of the concrete have been checked for all the mixes and it has been found that optimum utilization of quarry dust up to 30% can been done to produce SCC without compromising with its properties.


2020 ◽  
Vol 11 (1) ◽  
pp. 1
Author(s):  
Joseph Abah Apeh ◽  
Juliet Eyum Ameh

Self-compacting concrete (SCC) has great potentials as it offers several environmental, economic and technical benefits. Moreover, the use of fibers extends its possibilities since fibers arrest cracks and retard their propagation. Incorporation of Quarry Dust (QD) in SCC help to reduce environmental hazards during the production of QD. This study evaluated the fresh and hardened properties of steel fiber self-compacting concrete (SFSCC) incorporating QD. The optimum fiber and QD contents with no adverse effects on fresh and hardened properties were determined. A comparative study on behavior of SCC and SFSCC mixtures in terms of workability, compressive strength, compressive strength development ratio, tensile, flexural and energy absorption capacity was carried out. Test results showed that compressive strength increased with increase in QD contents at fixed fiber content by mass of Portland cement (PC) and then decreased. Strength development ratio (C28/C7) for SCC was 1.13, while it was 1.06, 1.08, 1.10 and 1.01 after reinforcing with 0.10, 0.20 and 0.30 contents of fiber. The compressive, tensile, flexural and energy absorption capacity or Toughness of SFSCC increased with the inclusion of the aforementioned contents of steel fiber up to 0.20 % volume of total binder at constant QD content and then decreased when compared with control SCC values. From these results, optimum value for the variables studied was obtained from mix QD20 + 0.2fr. Hence, steel fiber and QD could be successfully used in SCC production not minding the slight draw back on workability of SCC caused by inclusion of steel fiber, but with a modified dosage of super-plasticizer (SP), fresh and hardened properties, in accordance with specifications in relevant code(s) can be achieved.


2015 ◽  
Vol 1125 ◽  
pp. 370-376
Author(s):  
Ahmad Farhan Hamzah ◽  
Mohd Haziman Wan Ibrahim ◽  
Norwati Jamaluddin ◽  
Ramadhansyah Putra Jaya ◽  
Norul Ernida Zainal Abidin

The influence of coal bottom ash on fresh properties of self-compacting concrete (SCC) were presented in this paper. Self-compacting concrete mixtures were produced by 0.40 water/powder ratio and coal bottom ash as a replacement of fine aggregates in varying percentages of 0%, 10%, 15%, 20%, 25% and 30%. The fresh concretes were tested for the key workability belongings of self-compacting concrete such as passing and filling abilities and segregation resistance. The fresh properties were investigated by slump flow; T500 spread time, sieve segregation and L-box test. It was found that the slump flow decreased whereas the T500 spread time increased with higher coal bottom ash content. The L-box blocking ratios changed from 0.92 to 0.65 and were mostly showed satisfactory blocking ratio. The presence of coal bottom ash improved the stability of SCC mixture and the segregation index obtained from sieve test reduced with greater bottom ash content. It can be concluding that the filling and passing ability of SCC decreased when the amount of coal bottom ash content increased. In addition, the segregation resistance index decreased with higher coal bottom ash content.


Author(s):  
Hasan Erhan Yücel ◽  
Hatice Öznur Öz ◽  
Muhammet Güneş

In this study, properties of self-compacting concretes (SCCs) containing acidic and basic pumice (AP-BP) was investigated. SCCs incorporating AP-BP (SCCAs-SCCBs) were produced with constant slump flow diameter of 720±20 mm and 690±20 mm by adjusting superplasticizer (SP), respectively. Control mixture was designed with totally crushed stone aggregate. SCCAs and SCCBs could be produced up to 100% coarse AP with 20% increments and 60% coarse BP with 10% increments, respectively, to ensure the desired limit values for SCC. Firstly, fresh properties of SCCs were determined. Then, the mechanical and durability properties of SCCs were measured at 28 and 56 days. Test results indicated that workability properties of SCCAs are markedly higher than that of SCCBs. Additionally, mechanical and durability performances of SCCs decreased with increasing of AP and BP. The compressive strengths of SCCs containing 60% AP and BP decreased approximately 28-29% and 22-24%, compared to the control mixture, respectively. Similarly, modulus of elasticity of same mixtures decreased around 35-39% and 17-19%, respectively. However, all results indicated that SCCs produced with AP and BP provided the available limits in the design of SCC. Additionally, SCCBs exhibited higher performance than SCCAs in terms of hardened properties. Moreover, high correlation coefficients (R2>0.89) between the durability and mechanical properties were found for SCCs.


Author(s):  
Anthony Nkem Ede ◽  
Obatarhie Oshogbunu ◽  
Oluwarotimi Michael Olofinnade ◽  
Kayode Joshua Jolayemi ◽  
Solomon Olakunle Oyebisi ◽  
...  

Self-compacting concrete (SCC) flows through densely steel reinforced elements and consolidates under self-weight without need for vibration or compaction. This helps in complex and densely reinforced structures. The integration of fibers and fillers in concrete improves its general properties. The addition of fibers in particular can regulate the flow and workability of the concrete; hence, the high workable nature of SCC can be an ideal mix for the incorporation of fibers. This research investigates the effect of bamboo fibers and limestone powder on the fresh properties of self-compacting concrete. Bamboo fibers of an aspect ratio of 50 and varied volumes of 0.25%, 0.5%, 0.75% and 1% were adopted for this research. The workability of the mix was assessed by slump flow test and V-funnel test. For fiber volumes of 0.25%, 0.5%, 0.75%, it was observed that the coarse aggregate was evenly distributed across the spread, indicating good viscosity and stability of the mix. The presence of 10% percent limestone powder improved the workability of the concrete mix. This can be attributed to filler properties of limestone powder, which, affecting the cement particle system, changed the ordinary distance between them and modified the water quantity available for the hydration process. These results proved that the bamboo fiber and limestone powder can be sustainably adopted to regulate the flow-ability of SCC without compromising desired properties.


Concrete having characteristics strength of more than 65 MPa is categorized as high-strength concrete according to IS 456. The high strength concrete is more brittle compared to ordinary strength concrete and inclusion of fibers can increase the ductility of concrete. In the present study, high strength self-compacting concrete of characteristic strength of 90 MPa was developed as per the guidelines of EFNARC. Basalt fibers were considered to investigate its influence on the properties of high strength self compacting concrete. Three aspect ratios of 230, 530 and 600 were considered and are added in proportions of 0.1% and 0.4% by volume of concrete. The properties of concrete determine were fresh and hardened. Fresh properties such as slump flow test, V-funnel test, V-funnel T5 minutes and L-box test were determined as per EFNARC. Also, hardened properties such as compressive strength, split tensile strength and flexural strength were determined. A typical comparison on the effect of aspect ratio of basalt fibers and the dosage on the properties of concrete were determined. From the results, the optimum dosage of fibers was determined.


This paper explains the combined effect of granite cutting waste and recycled concrete on the workability and mechanical properties of self compacting concrete. Experimental plan is divided in such a way that granite cutting waste is replaced with fine aggregate at 0, 20,40,60,80 and 100% proportions. Recycled concrete is replaced with the coarse aggregate starting from 20 to 100%. Total 36 mixes were designed to check the fresh and hardened properties. Slump flow and T500, v-funnel and L-box test are conducted to know the flow ability and passing ability of concrete. To study the hardened properties compressive strength, flexural strength test values are to be collected.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Oluwaseun Mark ◽  
Anthony Ede ◽  
Chinwuba Arum ◽  
Solomon Oyebisi

Abstract Indiscriminate waste disposal poses a severe environmental challenge globally. Recycling of industrial wastes for concrete production is currently the utmost effective way of managing wastes for a cleaner environment and sustainable products. This study investigates the strength characteristics of self-compacting concrete (SCC) containing induction furnace slag (IFS) as a supplementary cementitious material (SCM). The materials utilized include 42.5R Portland cement, induction furnace slag as an SCM ranging from 0 to 50 % by cement weight at 10 % interval, river sand, granite, water and superplasticizer. The fresh properties were tested for filling ability, passing ability and segregation resistance, the strength characteristics measured include compressive strength, splitting tensile strength, flexural strength and Schmidt/rebound number. The oxide compositions and microstructural analysis of SCC were investigated using x-ray fluorescence analyser (XRF) and scanning electron microscopy equipped with energy-dispersive x-ray spectroscopy (SEM-EDS), respectively. Empirical correlations were statistically analyzed using MS-Excel tool. The filling ability characteristic was determined via both the slump flow test and the T50cm slump flow time test. Moreover, the passing ability characteristic was determined using L-Box test. The segregation resistance characteristic was determined using V-funnel at T5minutes test. The results of the fresh properties showed a reduction in the slump flow with increasing IFS content. On the other hand, the T50cm slump flow increased with increasing IFS content. Furthermore, the L-Box decreased with higher IFS content. On the contrary, the V-funnel at T5minutes increased considerably with greater IFS content. The strength test results revealed that the strength properties increased to 20 % IFS, with a value of 66.79 N/mm2 compressive strength at 56 days, giving a rise of 12.61 % over the control. The SCC microstructural examinations revealed the amorphous and better interface structures with increasing IFS content in the mix. The empirical correlations revealed that linear relationships exist among the measured responses (fresh and strength properties). Ultimately, IFS could be utilized as a sustainable material in producing self-compacting concrete.


2019 ◽  
Vol 9 (6) ◽  
pp. 4901-4904
Author(s):  
A. Saand ◽  
K. A. Jamali ◽  
M. A. Keerio ◽  
T. Ali ◽  
N. Bhatti

This paper presents the fresh properties of Self-Compacting Concrete (SCC) containing metakaolin (MK) produced by calcination of the natural material soorh of district Thatta Sind in Pakistan. Five mixes were tested, including four MK mixes replacing 5-20% of cement, with 0.38 water/binder (W/B) ratio. The fresh properties of the SCCs were evaluated using slump flow, T50, V-funnel, J ring, L-box and sieve segregation tests. Compressive strength of the control and the MK SCC was also investigated. The fresh concrete test results revealed that SCC could be developed by substituting cement with local MK, using 2% superplasticizers and without using a viscosity-modifying amplifier. The SCC with 15% replacement of cement with local MK showed maximum compressive strength, which was 10.39% higher than the control specimen’s without MK.


Sign in / Sign up

Export Citation Format

Share Document