scholarly journals Shear Strengthening of Composite Steel-Concrete Girders with Web Openings Using CFRP Sheets

2018 ◽  
Vol 7 (4.20) ◽  
pp. 443
Author(s):  
Wael Shawky AbdulSahib ◽  
Mohammed J. Hamood ◽  
Ahmed Mohammed Majeed

This study presents an experimental investigation of subjecting one-point load at mid-span of five composite steel-concrete girders that are loaded predominantly in shear. Three of girders are reference girders with no web openings, square web openings, and circular web openings, respectively. The both other girders are strengthened girders. The compressive strength of concrete, slab reinforcement and all dimensions of girders are kept. The CFRP laminates were adhesively attached to the webs of strengthened girders in various patterns and were done to estimate the effect of strengthening scheme by CFRP composite on increasing of the ultimate load capacity of the web openings girders. The research purposes to examine the behavior and effect of increasing in the ultimate shear capacity of strengthened girders that have constant dimensions and locations of web openings which is about 40 % of web depth. The results show the increase in ultimate load capacity of strengthened girders containing square and circular web openings with about 23.75% and 25.9%, respectively compared to that of reference girders. Furthermore, the ultimate shear strength was predicted by von Mises stresses were used for girders without and with square and circular web openings.  

2015 ◽  
Vol 15 (02) ◽  
pp. 1450047 ◽  
Author(s):  
Aliakbar Hayatdavoodi ◽  
Nandivaram Elumalai Shanmugam

The paper is concerned with ultimate load behavior of steel–concrete composite plate girders subjected to combined action of shear and bending. An analytical method is presented to predict the interactive response of the girder. The method considers the tension field action in the plate girder web panel and shear failure of concrete slab. The method is approximate and can be applied to composite plate girders at the preliminary stages of design. Strength of composite plate girders is investigated by varying the moment/shear ratio. It is shown that ultimate load capacity of composite plate girder is influenced by moment/shear ratio. The predicted results are compared with the corresponding finite-element values.


2021 ◽  
Vol 25 (6) ◽  
pp. 91-102
Author(s):  
Aula H. Faeq ◽  
◽  
Ali H. Aziz ◽  

The current experimental investigation is devoted to study the structural capacity of near-surface mounted steel bars strengthened deep beams. Six reinforced SCC deep beam specimens with a dimension of 1400mm x175mm x350mm were tested under Combined Loads of Repeated and Elevated Temperature. The adopted variable includes the type of loading, degree of elevated temperature, and presence or absence of the strengthening by NSM-steel bars. The experimental results show that the ultimate load of B2-R-T20 decreased by about 33% when the applied load changed from monotonic to repeated; also, when the degree of burning increased to (200oC) and (350oC), the ultimate load decreased by 44% and 65% , respectively. The presence of the strengthened NSM-steel bars leads to increase the lateral strength of the tested beams and arrested the diagonal cracks to be widening as a result, the ultimate load capacity increases by (193%-197%) for the samples exposed to elevated temperature, in comparison with reference beams. The adopted strengthened technique proved to be adequate to restore and increase the shear capacity of the tested beams.


2014 ◽  
Vol 20 (3) ◽  
pp. 330-337 ◽  
Author(s):  
Nandivaram E. Shanmugam ◽  
Mohammed A. Basher ◽  
Khalim A. Rashid

The paper is concerned with the ultimate load capacity of horizontally curved composite plate girders. An approximate method to predict the ultimate shear strength of the girders is presented. The proposed method accounts for the tension field action in web panels, composite action between steel plate girder and reinforced concrete slab with full interaction and presence of web openings. The accuracy of the method is assessed by comparing the predicted values of ultimate shear strength with the corresponding results obtained by using the nonlinear finite element analyses through a computer package LUSAS. The comparisons show that the proposed method is capable of predicting the ultimate shear strength with an acceptable accuracy. Presence of web openings of different proportions and their effects on ultimate strength of the girders are examined. Girders with trapezoidally corrugated webs are also considered in the study.


2012 ◽  
Vol 256-259 ◽  
pp. 1148-1153 ◽  
Author(s):  
Yuan Dong Wang ◽  
Shen Yang ◽  
Miao Han ◽  
Xun Yang

This paper presents the results of reinforced concrete (RC) beams strengthened in shear by external reinforcement with RC or epoxy resin mortar. The test specimen was 2000mm long with a cross section of 150mm×200mm and after section enlargement the cross section was increased to 250mm×300mm, in addition, shear span to beam depth ratio of a/h0 was 2.35. All specimens had the same geometry and were distinguished by the configurations of stirrup which was the primary test variable. No shear reinforcement was provided in the first phase of test, while in the second phase external RC or epoxy resin mortar was provided to enable failure due to shear. Experiments are undertaken to investigate the influence of preexisting damage, configurations of stirrup and different methods on the strengthened behavior and mode of failure. A group unstrengthened control beams were tested and failed in shear. In contrast to the control beam, all of the strengthened beams showed a significant improvement in their ultimate load capacity when they were failing in shear. The enlarged section with reinforced concrete can significantly increase the ductility and ultimate shear strength of a concrete beam. The method of section enlargement with RC is a high effective technique to enhance shear ability. An analysis for shear strengthening of beams using external reinforcement with RC has also been carried out as well.


1967 ◽  
Vol 93 (3) ◽  
pp. 259-267
Author(s):  
Marek Janas ◽  
Lance A. Endersbee ◽  
M.L. Juncosa ◽  
K.V. Swaminathan ◽  
A. Rajaraman

2020 ◽  
Vol 857 ◽  
pp. 162-168
Author(s):  
Haidar Abdul Wahid Khalaf ◽  
Amer Farouk Izzet

The present investigation focuses on the response of simply supported reinforced concrete rectangular-section beams with multiple openings of different sizes, numbers, and geometrical configurations. The advantages of the reinforcement concrete beams with multiple opening are mainly, practical benefit including decreasing the floor heights due to passage of the utilities through the beam rather than the passage beneath it, and constructional benefit that includes the reduction of the self-weight of structure resulting due to the reduction of the dead load that achieves economic design. To optimize beam self-weight with its ultimate resistance capacity, ten reinforced concrete beams having a length, width, and depth of 2700, 100, and 400 mm, respectively were fabricated and tested as simply supported beams under one incremental concentrated load at mid-span until failure. The design parameters were the configuration and size of openings. Three main groups categorized experimental beams comprise the same area of openings and steel reinforcement details but differ in configurations. Three different shapes of openings were considered, mainly, rectangular, parallelogram, and circular. The experimental results indicate that, the beams with circular openings more efficient than the other configurations in ultimate load capacity and beams stiffness whereas, the beams with parallelogram openings were better than the beams with rectangular openings. Commonly, it was observed that the reduction in ultimate load capacity, for beams of group I, II, and III compared to the reference solid beam ranged between (75 to 93%), (65 to 93%), and (70 to 79%) respectively.


2018 ◽  
Vol 65 ◽  
pp. 08010
Author(s):  
Je Chenn Gan ◽  
Jee Hock Lim ◽  
Siong Kang Lim ◽  
Horng Sheng Lin

Applications of Cold-Formed Steel (CFS) are widely used in buildings, machinery and etc. Many researchers began the research of CFS as a roof truss system. It is required to increase the knowledge of the configurations of CFS roof trusses due to the uncertainty of the structural failures regarding the materials and rigidity of joints. The objective of this research is to investigate the effect of heel plate length to the ultimate load capacity of CFS roof truss system. Three different lengths of heel plate specimens were fabricated and subjected to concentrated loads until failure. The highest ultimate capacity for the experiment was 30 kN. The results showed that the increment of the length of the heel plate had slightly increased the ultimate capacity and strain. The increment of the length of the heel plate had increased the deflection of the bottom chords but decreased the deflection of the top chords. Local buckling of top chords adjacent to the heel plate was the primary failure mode for all the heel plate specimens.


Sign in / Sign up

Export Citation Format

Share Document