scholarly journals Improvement of a nonnegative preserved efficient solver for atmospheric chemical kinetic equations

2018 ◽  
Vol 7 (3) ◽  
pp. 6657
Author(s):  
Atika RADID ◽  
Karim RHOFIR

Generally, chemical reactions from atmospheric chemistry models are described by a strongly coupled, stiff and nonlinear system of ordinary differential equations, which requires a good numerical solver. Several articles published about the solvers of chemical equations, during the numerical simulation, indicate that one renders the concentration null when it becomes negative. In order to preserve the positivity of the exact solutions, recent works have proposed a new solver called Modified-Backward-Euler (MBE). To improve this solver, we propose in this paper an iterative numerical scheme witch is better fitted to stiff problems. This new approach, called Iterative-Modified-Backward-Euler (IMBE), is based on iterative solution of the P-L structure of the implicit nonlinear ordinary differential equations on each time step. The efficiency of the iteration process is increased by using the Gauss and Successive-Over-Relaxation (SOR). In the case of fast/slow chemical kinetic reactions, we proposed an other variant called Iterative-Quasi-Steady-State-Approximation (IQSSA). The numerical exploration of stiff test problem shows clearly that this formalism is applicable to a wide range of chemical kinetics problems and give a good approximation compared to the recent solver. The numerical procedures give reasonable accurate solutions when compared to exact solution.Generally, chemical reactions from atmospheric chemistry models are described by a strongly coupled, stiff and nonlinear system of ordinary differential equations, which requires a good numerical solver. Several articles published about the solvers of chemical equations, during the numerical simulation, indicate that one renders the concentration null when it becomes negative. In order to preserve the positivity of the exact solutions, recent works have proposed a new solver called Modified-Backward-Euler (MBE). To improve this solver, we propose in this paper an iterative numerical scheme witch is better fitted to stiff problems. This new approach, called Iterative-Modified-Backward-Euler (IMBE), is based on iterative solution of the P-L structure of the implicit nonlinear ordinary differential equations on each time step. The efficiency of the iteration process is increased by using the Gauss and Successive-Over-Relaxation (SOR). In the case of fast/slow chemical kinetic reactions, we proposed an other variant called Iterative-Quasi-Steady-State-Approximation (IQSSA). The numerical exploration of stiff test problem shows clearly that this formalism is applicable to a wide range of chemical kinetics problems and give a good approximation compared to the recent solver. The numerical procedures give reasonable accurate solutions when compared to exact solution.

2012 ◽  
Vol 2012 ◽  
pp. 1-12 ◽  
Author(s):  
An Liu ◽  
Erwie Zahara ◽  
Ming-Ta Yang

Ordinary differential equations usefully describe the behavior of a wide range of dynamic physical systems. The particle swarm optimization (PSO) method has been considered an effective tool for solving the engineering optimization problems for ordinary differential equations. This paper proposes a modified hybrid Nelder-Mead simplex search and particle swarm optimization (M-NM-PSO) method for solving parameter estimation problems. The M-NM-PSO method improves the efficiency of the PSO method and the conventional NM-PSO method by rapid convergence and better objective function value. Studies are made for three well-known cases, and the solutions of the M-NM-PSO method are compared with those by other methods published in the literature. The results demonstrate that the proposed M-NM-PSO method yields better estimation results than those obtained by the genetic algorithm, the modified genetic algorithm (real-coded GA (RCGA)), the conventional particle swarm optimization (PSO) method, and the conventional NM-PSO method.


1986 ◽  
Vol 108 (2) ◽  
pp. 348-353 ◽  
Author(s):  
K. Radhakrishnan

A comparison of the accuracy of several techniques recently developed for solving stiff differential equations is presented. The techniques examined include two general-purpose codes EPISODE and LSODE developed for an arbitrary system of ordinary differential equations, and three specialized codes CHEMEQ, CREK1D, and GCKP84 developed specifically to solve chemical kinetic rate equations. The accuracy comparisons are made by applying these solution procedures to two practical combustion kinetics problems. Both problems describe adiabatic, homogeneous, gas-phase chemical reactions at constant pressure, and include all three combustion regimes: induction, heat release, and equilibration. The comparisons show that LSODE is the most efficient code—in the sense that it requires the least computational work to attain a specified accuracy level—currently available for chemical kinetic rate equations. An important finding is that an iterative solution of the algebraic enthalpy conservation equation for the temperature can be more accurate and efficient than computing the temperature by integrating its time derivative.


2001 ◽  
Vol 432 ◽  
pp. 167-200 ◽  
Author(s):  
ODD M. FALTINSEN ◽  
ALEXANDER N. TIMOKHA

Two-dimensional nonlinear sloshing of an incompressible fluid with irrotational flow in a rectangular tank is analysed by a modal theory. Infinite tank roof height and no overturning waves are assumed. The modal theory is based on an infinite-dimensional system of nonlinear ordinary differential equations coupling generalized coordinates of the free surface and fluid motion associated with the amplitude response of natural modes. This modal system is asymptotically reduced to an infinite-dimensional system of ordinary differential equations with fifth-order polynomial nonlinearity by assuming sufficiently small fluid motion relative to fluid depth and tank breadth. When introducing inter-modal ordering, the system can be detuned and truncated to describe resonant sloshing in different domains of the excitation period. Resonant sloshing due to surge and pitch sinusoidal excitation of the primary mode is considered. By assuming that each mode has only one main harmonic an adaptive procedure is proposed to describe direct and secondary resonant responses when Moiseyev-like relations do not agree with experiments, i.e. when the excitation amplitude is not very small, and the fluid depth is close to the critical depth or small. Adaptive procedures have been established for a wide range of excitation periods as long as the mean fluid depth h is larger than 0.24 times the tank breadth l. Steady-state results for wave elevation, horizontal force and pitch moment are experimentally validated except when heavy roof impact occurs. The analysis of small depth requires that many modes have primary order and that each mode may have more than one main harmonic. This is illustrated by an example for h/l = 0.173, where the previous model by Faltinsen et al. (2000) failed. The new model agrees well with experiments.


2019 ◽  
Vol 219 (2) ◽  
pp. 816-833 ◽  
Author(s):  
Maricela Best Mckay ◽  
Brittany A Erickson ◽  
Jeremy E Kozdon

SUMMARY We present a numerical method for the simulation of earthquake cycles on a 1-D fault interface embedded in a 2-D homogeneous, anisotropic elastic solid. The fault is governed by an experimentally motivated friction law known as rate-and-state friction which furnishes a set of ordinary differential equations which couple the interface to the surrounding volume. Time enters the problem through the evolution of the ordinary differential equations along the fault and provides boundary conditions for the volume, which is governed by quasi-static elasticity. We develop a time-stepping method which accounts for the interface/volume coupling and requires solving an elliptic partial differential equation for the volume response at each time step. The 2-D volume is discretized with a second-order accurate finite difference method satisfying the summation-by-parts property, with boundary and fault interface conditions enforced weakly. This framework leads to a provably stable semi-discretization. To mimic slow tectonic loading, the remote side-boundaries are displaced at a slow rate, which eventually leads to earthquake nucleation at the fault. Time stepping is based on an adaptive, fourth-order Runge–Kutta method and captures the highly varying timescales present. The method is verified with convergence tests for both the orthotropic and fully anisotropic cases. An initial parameter study reveals regions of parameter space where the systems experience a bifurcation from period one to period two behaviour. Additionally, we find that anisotropy influences the recurrence interval between earthquakes, as well as the emergence of aseismic transients and the nucleation zone size and depth of earthquakes.


1974 ◽  
Vol 96 (2) ◽  
pp. 191-196 ◽  
Author(s):  
A. L. Crosbie ◽  
T. R. Sawheny

Ambarzumian’s method had been used for the first time to solve a radiant interchange problem. A rectangular cavity is defined by two semi-infinite parallel gray surfaces which are subject to an exponentially varying heat flux, i.e., q = q0 exp(−mx). Instead of solving the integral equation for the radiosity for each value of m, solutions for all values of m are obtained simultaneously. Using Ambarzumian’s method, the integral equation for the radiosity is first transformed into an integro-differential equation and then into a system of ordinary differential equations. Initial conditions required to solve the differential equations are the H functions which represent the radiosity at the edge of the cavity for various values of m. This H function is shown to satisfy a nonlinear integral equation which is easily solved by iteration. Numerical results for the H function and radiosity distribution within the cavity are presented for a wide range of m values.


Author(s):  
Hameeda Oda Al-Humedi ◽  
Shaimaa Abdul-Hussein Kadhim

The purpose of this paper is to apply the fuzzy natural transform (FNT) for solving linear fuzzy fractional ordinary differential equations (FFODEs) involving fuzzy Caputo’s H-difference with Mittag-Leffler laws. It is followed by proposing new results on the property of FNT for fuzzy Caputo’s H-difference. An algorithm was then applied to find the solutions of linear FFODEs as fuzzy real functions. More specifically, we first obtained four forms of solutions when the FFODEs is of order α∈(0,1], then eight systems of solutions when the FFODEs is of order α∈(1,2] and finally, all of these solutions are plotted using MATLAB. In fact, the proposed approach is an effective and practical to solve a wide range of fractional models.


2014 ◽  
Vol 136 (4) ◽  
Author(s):  
H. R. Mozayyeni ◽  
Asghar B. Rahimi

The general formulation and exact solution of the Navier–Stokes and energy equations regarding the problem of steady and unsteady two-dimensional stagnation-point flow and heat transfer is investigated in the vicinity of a flat plate. The plate is moving at time-dependent or constant velocity towards the main low Mach number free stream or away from it. The main stream impinges along z-direction on the flat plate with strain rate a and produces two-dimensional flow. The fluid is assumed to be viscous and compressible. The density of the fluid is affected by the existing temperature difference between the plate and potential far field flow. Suitably introduced similarity transformations are used to reduce the governing equations to a coupled system of ordinary differential equations. Finite Difference Scheme is used to solve these non-linear ordinary differential equations. The obtained results are presented over a wide range of parameters characterizing the problem. It is revealed that the significance of the increase of thermal expansion coefficient, β, and wall temperature on velocity and temperature distributions is much more noticeable for a plate moving away from impinging flow. Moreover, negligible shear stress and heat transfer is reported between the plate and fluid viscous layer close to the plate for a wide range of β coefficient when the plate moves away from incoming far field flow.


Sign in / Sign up

Export Citation Format

Share Document