scholarly journals Theoretical Bending Collapse of Hat-Section Tubes

2018 ◽  
Vol 7 (4.26) ◽  
pp. 153
Author(s):  
Hafizan Hashim ◽  
Hanita Hashim ◽  
Arif Affendi Jamal ◽  
M. A.M. Jusoh

This paper presents an attempt to modify an existing theoretical model to predict the bending collapse response of hat-section tubular structures. The analytical collapse model was based on Kim and Reid. Additional hinge lines created during deformation of the tube were examined and integrated with existing model to forming a modified analytical solution. Variation of the hinge moments were solved using limit analysis technique. Procedure for developing the finite element (FE) models of tube specimens was also presented. Moment-rotation characteristics from pure bending simulation were compared with analytical model and good agreement was achieved. The average of differences between simulation and calculation were found to be <5% within plastic region. In conclusion, the modified analytical solution has adequate capability to predict the moment-rotation relationship of hat-section tubes subject to pure bending.. 

2013 ◽  
Vol 676 ◽  
pp. 170-174
Author(s):  
Ju Tao Kuang ◽  
Ai Rong Liu ◽  
Qi Ca Yu ◽  
Jiang Dong Deng

By the setting torsional and lateral displacement function of sidewise buckling of two-hinged circular arch under concentrated force, the single-arch structure's bending, torsional deformation and external force potential can be constructed. An analytical solution for the lateral critical buckling load of two-hinged arch is first deduced by using the energy method; the results are also compared and analyzed by the finite element method. The results show that the analytical solution of single arch’s lateral critical buckling load is in good agreement with the finite element numerical solution, and the validity of the formula is proven.


Author(s):  
D T I Francis ◽  
M M Sadek

A method is presented for calculating the acoustic emission of a vibrating body within an enclosure whose surface has known absorption characteristics. It is based on a numerical solution of the Helmholtz integral equation. Solutions are given for the case of a pulsating sphere within a sphere, and good agreement with the exact analytical solution is reported. The method is of value for small and medium scale problems at lower frequencies, where traditional techniques are less reliable. It is also potentially less demanding computationally than finite element methods.


2016 ◽  
Vol 16 (07) ◽  
pp. 1550035 ◽  
Author(s):  
Chen-Cheng Chung ◽  
Kuo-Long Lee ◽  
Wen-Fung Pan

The mechanical behavior and buckling failure of sharp-notched 6061-T6 aluminum alloy tubes with different notch depths subjected to cyclic bending are experimentally and theoretically investigated. The experimental moment–curvature relationship exhibits an almost steady loop from the beginning of the first cycle. However, the ovalization–curvature relationship exhibits a symmetrical, increasing, and ratcheting behavior as the number of cycles increases. The six groups of tubes tested have different notch depths, from which two different trends can be observed from the relationship between the controlled curvature and the number of cycles required to ignite buckling. Finite element software ANSYS is used to simulate the moment–curvature and ovalization–curvature relationships. Additionally, a theoretical model is proposed for simulation of the controlled curvature-number of cycles concerning the initiation of buckling. Simulation results are compared with experimental test data, which shows generally good agreement.


Author(s):  
Nilson Barbieri ◽  
Rubem Penteado de Melo ◽  
Key Fonseca de Lima ◽  
Gabriel de Sant’Anna Vitor Barbieri

In this work, a combination of B-train type vehicle is dynamically analysed through lateral movement at low speed manoeuvre known as Lane Change Manoeuvre. The analyses were conducted for a vehicle with liquid loads of 100%, 80%, 60% and 40% capacity. The analyses involve adjusting the steer angle through an objective function taking into account the numerical and experimental lateral acceleration of the tractor vehicle. The movement of the liquid (slosh) during the manoeuvres are approximated using the software Pasimodo and trammel pendulum. Considering the upper surface of the liquid inside the tank as a straight line, it is possible to obtain the centre of gravity variation and the moment of inertia through polynomial adjustments. In this way, it is possible to analyse numerically the behaviour of the vehicle with liquid load in a curved trajectory. To obtain modal parameters, the operational modal analysis technique is used. With the applied methodology, it was possible to find good agreement between the numerical and experimental values of the acceleration signals in four different positions in the vehicle combination. Through the analyses of the vehicle with fluid in movement, it was possible to verify a great variation of load in the wheels due to transfer of load of the vehicle travelling by curved trajectories or due to evasive manoeuvres. This is a critical condition that can lead the vehicle to rollover condition. The experimental data were obtained for the vehicle at constant speed (between 30 and 40 km/h) and under these conditions, the vehicle is considered stable by analysing the eigenvalues.


1993 ◽  
Vol 115 (1) ◽  
pp. 102-109 ◽  
Author(s):  
S. A. Majlessi ◽  
D. Lee

The process of square-cup drawing is modeled employing a simplified finite element analysis technique. In order to make the algorithm computationally efficient, the deformation (total strain) theory of plasticity is adopted. The solution scheme is comprised of specifying a mesh of two-dimensional finite elements with membrane properties over the deformed configuration of the final part geometry. The initial positions of these elements are then computed by minimization of the potential energy, and therefore the strain distributions are determined. In order to verify predictions made by the finite element analysis method, a drawing apparatus is built and various drawing experiments are carried out. A number of circular and square cups are drawn and strain distributions measured. It is observed that there is generally a good agreement between computed and measured results for both axisymmetric and nonaxisymmetric cases.


2011 ◽  
Vol 291-294 ◽  
pp. 2133-2138 ◽  
Author(s):  
Mu Hui Fan ◽  
Yong Shu Jiao ◽  
Zong Xi Cai

Based on the theory of elasticity and taken the casing-cement sheath as a totally contacted composite cylinder subjected to arbitrarily distributed loading on inner and outer surfaces, an analytical solution in Fourier serial form was obtained for stresses and displacements. A computer program was developed to evaluate the stress and displacement in the combined cylinder. The results are in good agreement with those from the finite element method (FEM). With these solutions we can investigate the interaction between casing and the cement sheath. This is of importance in improving the design of casing.


2020 ◽  
Vol 13 (2) ◽  
pp. 348-379
Author(s):  
R. F. F. KOCHEM ◽  
S. de NARDIN

Abstract The slim floor system has been used mainly due to the structural and constructive advantages of it, such as the capacity to overcome large spans with the low height of the composite floor system. There is a lack of finite element modelling researches of composite connections between the slim floor system and columns, especially with the concrete infilled steel tube columns. This paper presents the numerical approach based on the solid modelling, for the simulation of the nonlinear structural behavior of composite connection between partially encased composite beam and concrete infilled steel tube column; in this model, the composite beam represents the slim floor. The ABAQUS finite element code was used to investigate the behavior of composite connection that consists of a shear steel plate and negative reinforcement of the composite slab. In this paper, the authors discusses the procedures to the numerical model construction including finite elements and boundary conditions. Besides, the influence of stress-strain relationships for concrete and steel and the parameters that defines each model are presented and discussed, as well as the different steel to concrete interface conditions. Based on the results obtained, the effectiveness of the numerical model developed was verified against experimental results showing a good agreement response for the Moment vs. Rotation response, as well as the moment resistance of the composite connection.


1993 ◽  
Vol 37 (03) ◽  
pp. 239-252
Author(s):  
Thomas Perry ◽  
Zan Miller

A classical solution derived by Jones (1968) is used to evaluate the buckling performance of unstiffened generally orthotropic and quasi-isotropic laminated Graphite/Epoxy (GREP) composite cylinders subjected to external hydrostatic pressure. The results of the analysis are compared to finite-element analysis results. Hydrostatic testing to failure of several 12-ply T300/5208 GREP cylinders demonstrated that the classical buckling solution is quite accurate. The finite-element results showed good agreement with both Jones' solution and test data, with several notable exceptions. Evaluation of strain gage data via Southwell's (1932) method indicates that the test cylinders were fabricated very nearly true. A postiori buckling predictions using Southwell plots all compared quite favorably with the Jones' equation predictions. This work demonstrates that a relatively simple analytical solution can reliably evaluate the performance of composite materials in pressure hull applications.


Author(s):  
Nobuhisa Suzuki ◽  
Joe Kondo ◽  
Shigeru Endo ◽  
Nobuyuki Ishikawa ◽  
Mitsuhiro Okatsu ◽  
...  

Validation of finite element modeling to predict bending capacity of linepipes and effects of geometric imperfection on the bending capacity are presented. A bending test of an X80 linepipe was conducted to discuss the validation and investigate the effects. The geometric imperfection of the linepipe about the outside diameter, the wall thickness and the longitudinal blister of the linepipe was measured in the round. Consequently, the results obtained by FEA taking into account the geometric imperfection present good agreement with the experimental data. And the moment capacity is virtually independent of the geometric imperfection however the strain capacity of the linepipe is quite susceptible to the geometric imperfection.


Author(s):  
Nobuhisa Suzuki ◽  
Joe Zhou ◽  
Masao Toyoda

Regression formulas are developed in order to predict the critical compressive strain of X80 linepipes subjected to pure bending. The regression formulas were derived using an analytical solution and two conversion functions. The analytical solution was previously proposed to calculate the critical compressive strain of a pipe subjected to axial compression, where hardening properties are taken into account. The original analytical solution was rewritten to include a strain-hardening exponent. Two conversion functions are defined to connect two critical compressive strains of a pipe under different loading conditions. One is a pressure-effect conversion function which connects two critical compressive strains of a pipe without and with internal pressure, respectively. The other is a compression-bending conversion function which also connects two critical compressive strains of a pressurized pipe which is subjected to compression and bending. The regression formulas were obtained using the improved analytical solution and the two conversion functions. The regression formulas yield good agreement with FEA results especially for high-strain linepipes.


Sign in / Sign up

Export Citation Format

Share Document