scholarly journals Robust Control Design of Nonlinear System by Using Back-Stepping-GSA and Sliding Mode Technique

2018 ◽  
Vol 7 (4.33) ◽  
pp. 494
Author(s):  
Sahazati Md Rozali ◽  
Rozilawati Mohd Nor ◽  
Amar Faiz Zainal Abidin ◽  
Muhammad Kamarudin ◽  
Zairi Ismael Rizman

This work presents the integration of two robust controllers such as back-stepping and sliding mode controller, which is designed for nonlinear system with external disturbance injected to its actuator. Gravitational Search Algorithm (GSA) is applied to the designed controller to optimize the control and reaching law parameters for the system. The dynamics of the system is developed by consider the external force as system’s nonlinearities. The tracking output and tracking error produced by combination of these two controllers is compared with the performance of classical sliding mode controller. Based on the results obtained, integration of these two controllers generates better performance than classical sliding mode controller based on its output and error.  

Author(s):  
Siti Marhainis Othman ◽  
M. F. Rahmat ◽  
S. M. Rozali ◽  
Zulfatman Has ◽  
A. F. Z. Abidin

<p>This paper presents the design of the modified sliding mode controller (MSMC) for the purpose of tracking the nonlinear system with mismatched disturbance. Provided that the performance of the designed controller depends on the value of control parameters, gravitational search algorithm (GSA), and particle swarm optimization (PSO) techniques are used to optimize these parameters in order to achieve a predefined system’s performance. In respect of system’s performance, it is evaluated based on the tracking error present between reference inputs transferred to the system and the system output. This is followed by verification of the efficiency of the designed controller in simulation environment under various values, with and without the inclusion of external disturbance. It can be seen from the simulation results that the MSMC with PSO exhibits a better performance in comparison to the performance of the similar controller with GSA in terms of output response and tracking error.</p>


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Sahazati Md Rozali ◽  
Mohd Fua’ad Rahmat ◽  
Abdul Rashid Husain

This paper presents backstepping controller design for tracking purpose of nonlinear system. Since the performance of the designed controller depends on the value of control parameters, gravitational search algorithm (GSA) and particle swarm optimization (PSO) techniques are used to optimise these parameters in order to achieve a predefined system performance. The performance is evaluated based on the tracking error between reference input given to the system and the system output. Then, the efficacy of the backstepping controller is verified in simulation environment under various system setup including both the system subjected to external disturbance and without disturbance. The simulation results show that backstepping with particle swarm optimization technique performs better than the similar controller with gravitational search algorithm technique in terms of output response and tracking error.


2018 ◽  
Vol 7 (3.13) ◽  
pp. 27
Author(s):  
Asst. Pro.Dr.Ekhlas H.Karam ◽  
Noor. M.Mjeed

In this paper, a robust Radial Basis Function (RBF) Backstepping Sliding Mode controller (BS-SMC) is successfully developed for the attitude stabilization and tracking the trajectory of two wheeled self-balancing mobile robot under the external disturbance and uncertainty. The design of BS control is derived based on Lyapunov function to ensure the stability of the robot system and the SMC is designed with a switching function in order to attenuate the effects of the disturbances,   the auto-adjustable RBF inference system is suggested to estimate the equivalent component of the BS-SMC to treat the model dependency problem and robustness improvement. Also a cuckoo search (CS) optimization algorithm is used to determine the optimal values of the backsteeping sliding mode controller. Numerical simulations show the efficiency of the suggested controller in handling the balance and tracking problems of the two wheeled self-balancing mobile robot  


Author(s):  
Randa Jalaa Yahya ◽  
Nizar Hadi Abbas

A newly hybrid nature-inspired algorithm called HSSGWOA is presented with the combination of the salp swarm algorithm (SSA) and grey wolf optimizer (GWO). The major idea is to combine the salp swarm algorithm's exploitation ability with the grey wolf optimizer's exploration ability to generate both variants' strength. The proposed algorithm uses to tune the parameters of the integral sliding mode controller (ISMC) that design to improve the dynamic performance of the two-link flexible joint manipulator. The efficiency and the capability of the proposed hybrid algorithm are evaluated based on the selected test functions. It is clear that when compared to other algorithms like SSA, GWO, differential evolution (DE), gravitational search algorithm (GSA), particles swarm optimization (PSO), and whale optimization algorithm (WOA). The ISMC parameters were tuned using the SSA, which was then compared to the HSSGWOA algorithm. The simulation results show the capabilities of the proposed algorithm, which gives an enhancement percentage of 57.46% compared to the standard algorithm for one of the links, and 55.86% for the other.


2020 ◽  
Vol 8 ◽  
pp. 26-33
Author(s):  
Btissam Majout ◽  
Douae Abrahmi ◽  
Yasmine Ihedrane ◽  
Chakib El Bakkali ◽  
Karim Mohammed ◽  
...  

In this work, we are developing a new strategy for controlling wind systems based on the DFIG Generator. The SMC sliding mode technique is based on the principle of Lyapunov stability in order to make a nonlinear system close to linearity. The use of such a technique with an improvement in regulators to eliminate the Chattering phenomenon shows a great improvement in the performance of wind systems. which is based on performance estimators to improve the quality of the system. The energy quality at the output of the wind system will be injected into the distribution network according to international standards. The proposed model is validated on the Matlab & Simulink environment to test trajectory tracking and robustness.


Actuators ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 33
Author(s):  
Romina Zarrabi Ekbatani ◽  
Ke Shao ◽  
Jasim Khawwaf ◽  
Hai Wang ◽  
Jinchuan Zheng ◽  
...  

The ionic polymer metal composite (IPMC) actuator is a kind of soft actuator that can work for underwater applications. However, IPMC actuator control suffers from high nonlinearity due to the existence of inherent creep and hysteresis phenomena. Furthermore, for underwater applications, they are highly exposed to parametric uncertainties and external disturbances due to the inherent characteristics and working environment. Those factors significantly affect the positioning accuracy and reliability of IPMC actuators. Hence, feedback control techniques are vital in the control of IPMC actuators for suppressing the system uncertainty and external disturbance. In this paper, for the first time an adaptive full-order recursive terminal sliding-mode (AFORTSM) controller is proposed for the IPMC actuator to enhance the positioning accuracy and robustness against parametric uncertainties and external disturbances. The proposed controller incorporates an adaptive algorithm with terminal sliding mode method to release the need for any prerequisite bound of the disturbance. In addition, stability analysis proves that it can guarantee the tracking error to converge to zero in finite time in the presence of uncertainty and disturbance. Experiments are carried out on the IPMC actuator to verify the practical effectiveness of the AFORTSM controller in comparison with a conventional nonsingular terminal sliding mode (NTSM) controller in terms of smaller tracking error and faster disturbance rejection.


2011 ◽  
Vol 216 ◽  
pp. 96-100
Author(s):  
Jing Jun Zhang ◽  
Wei Sha Han ◽  
Li Ya Cao ◽  
Rui Zhen Gao

A sliding mode controller for semi-active suspension system of a quarter car is designed with sliding model varying structure control method. This controller chooses Skyhook as a reference model, and to force the tracking error dynamics between the reference model and the plant in an asymptotically stable sliding mode. An equal near rate is used to improve the dynamic quality of sliding mode motion. Simulation result shows that the stability of performance of the sliding-mode controller can effectively improve the driving smoothness and safety.


Sign in / Sign up

Export Citation Format

Share Document