scholarly journals A study on the correlation potential of compaction characteristics and atterberg limits of selected lateritic soils

2020 ◽  
Vol 8 (1) ◽  
pp. 22
Author(s):  
G.O Adunoye ◽  
A.A Ojo ◽  
A.F Alasia ◽  
M.O Olarewaju

The importance of soil compaction for civil engineering construction and application cannot be over-emphasised. To perform soil compaction, numerous number of samples are required, with considerable time and laborious laboratory activities. This has necessitated the need to find models for the prediction of compaction characteristics, using easily determined soil properties. This work therefore undertook a study of the correlation potential of compaction characteristics and Atterberg limits of soils, with a view to modelling compaction characteristics, using Atterberg limits. To achieve this aim, soil samples were obtained from selected locations within Obafemi Awolowo University campus, Ile-Ife, Nigeria. Preliminary, Atterberg limits and compaction tests were conducted on the soil samples, using standard procedure. Using Microsoft Excel and Xuru’s Regression tool, the laboratory test results were used to develop relationships between compaction characteristics (optimum moisture content and maximum dry density) and Atterberg limits (liquid limit and plastic limit). Results showed that the natural moisture content of soil samples ranged between 4.97 % and 19.72 %; liquid limit ranged between 27 % and 68 %; plastic limit ranged between 18.92 % and 63.01 %; and plasticity index ranged between 0.94 % and 14.63 %. The optimum moisture content ranged between 6.7 % and 27 %, while the maximum dry density ranged between 1560 kN/m3 and 2260 kN/m3. The results of regression analysis showed that the combination of liquid limit and plastic limit has a strong correlation with optimum moisture content (R2 = 0.870); while the combination (of liquid limit and plastic limit) showed a weak correlation with maximum dry density (R2 = 0.150). The study concluded that liquid limit and plastic limit could be used to estimate the optimum moisture content of the soils, by applying the developed relationship/equation.  

2019 ◽  
Vol 9 (2) ◽  
pp. 93-99
Author(s):  
Hunar F. Hama Ali ◽  
Ahmed J. Hama Rash ◽  
Madeh I. Hama kareem ◽  
Daban A. Muhedin

This paper addresses the correlation between the liquid and/or plastic limits with the compaction characteristics, maximum dry density, and optimum moisture content (OMC), for fine-grained soils. In the previous studies, several attempts have been made to identify these two important parameters from other simple soil properties such as index soil properties. Some concluded that liquid limit shows a good correlation with compaction characteristics, while others observed that plastic limit does. In this work, many soil samples have been taken from various locations around Koya city and the required tests have been carried out. The results have been illustrated to identify whether soil index properties can correlate with the compaction characteristics. It is concluded that neither plastic limit nor liquid limit can provide an adequate correlation with maximum dry density and OMC. Contrary to the literature, liquid limit provides better correlations.


2020 ◽  
Vol 6 ◽  
pp. 24-32
Author(s):  
Muhammad Israil ◽  
Muhammad Ashraf ◽  
Muhammad Fahim ◽  
Rashid Rehan ◽  
Sajjad Wali Khan ◽  
...  

This study presents experimental investigation of indigenous clays mixed with Bentonite to assess their suitability in potential use as clay liners. Soil samples with 0, 4, 8, and 12% Bentonite content from three different sites in Peshawar region were tested for various geotechnical properties. Grain size distribution, specific gravity, Atterberg limits and free swell were found through laboratory tests using appropriate ASTM procedures. Maximum dry density and optimum moisture content were calculated using Atterberg limits in available relationships. Finally, one dimensional consolidation tests were conducted to find relevant parameters for calculating hydraulic conductivity. A decrease in specific gravity, increase in free swell, and in optimum moisture content, decline in maximum dry density and hydraulic conductivity was observed with increase in Bentonite content across all three soil samples. During free swell, the soil clusters become larger leading to formation of floccules resulting in the narrowing of inter-particle space and thus blocking of permeable paths. It is concluded that 8% Bentonite content by weight yields a suitable mixture for a clay liner that has hydraulic conductivity in the range of recommended limits.


2018 ◽  
Vol 250 ◽  
pp. 01008
Author(s):  
Tuan Noor Hasanah Tuan Ismail ◽  
Siti Aimi Nadia Mohd Yusoff ◽  
Ismail Bakar ◽  
Devapriya Chitral Wijeyesekera ◽  
Adnan Zainorabidin ◽  
...  

Soils at many sites do not always have enough strength to bear the structures constructed over them and some of the soil may need to be stabilized in order to improve their geotechnical properties. In this paper, routine laboratory tests were critically carried out to investigate the efficacy of lignin in improving the strength behaviour of the soils. Two different soil samples (laterite and kaolin) were studied and mixed with different proportions of lignin (2% and 5% of dry weight of soil), respectively. Unconfined Compressive Strength (UCS) characteristics evaluated in this study were done on samples at their maximum dry density and optimum moisture content (obtained from compaction tests). The UCS tests on all the specimens were carried out after 0, 7, 15, 21 and 30 days of controlled curing. The research results showed that the addition of lignin into kaolin reduced its maximum dry density while giving progressively higher optimum moisture content. Contrarily, with the laterite soil, both maximum dry density and optimum moisture content simultaneously increased when lignin was added into the soils. The UCS results showed that the the stabilized laterite with 2% lignin continued to gain strength significantly at a fairly steady rate after 7 days. Unfortunately, lignin did not show a significant effect in kaolin.


2019 ◽  
Vol 3 (2) ◽  
pp. 1-7
Author(s):  
Syahdi Syahdi ◽  
Muhammad Suhaimi

Tanah merupakan salah satu dari sekian banyak material yang bervariasi (heterogen) antara satu lokasi dengan lokasi yang lain., maka dalam penelitian ini melakukan penambahan material pasir putih yang kemudian dicampurkan dengan tanah asli yang berasal dari desa Bangkuang Kecapamatan Karau Kuala Kabupaten Barito selatan. Kegiatan penelitian dilakukan di laboratorium Geoteknik dan Transportasi Politeknik Negeri Banjarmasin meliputi beberapa metode pungujian dilakukan sesuai dengan standar penelitian yaitu: SNI 03-1965-2008, SNI 03-1964-2008, SNI 03-1967-2008, SNI 03-1965-2008,SNI 03-1743-2008 SNI 03-1738-2011, dan SNI 2828:2011.  Hasil penelitian, dengan penambahan pasir putih sangat berpengaruh terhadap perbaikan sifat – sifat tanah yang akan digunakan untuk bahan stabilisasi subgredre,   maka didapat nilai sifat-sifat tanah diberi bahan pasir putih (0%) meliputi; kadar air (W) 23,87%, berat jenis (Gs) 2,59, batas cair (LL) 33,9%, batas plastis (PL) 20,11%, plastisitas indeks (PI) 13,79%, kadar air optimum (OMC) 18,6%, kepadatan kering maksimum (dMax) 1,61 Gr/Cm3 dan CBR desain 5%. Nilai sifat-sifat tanah diberi bahan tambah pasir putih. Nilai sifat-sifat tanah diberi bahan tambah pasir putih (15%) meliputi; berat jenis gabungan (Gs) 2,62, batas cair (LL) 29,6%, batas plastis (PL) 19,52%, plastisitas indeks (PI) 10,08%, kadar air optimum (Omc) 81,5%, kepadatan kering maksimum (dMax)) 1,54 Gr/Cm3 dan CBR desain 6,1%, berat isi kering (d) 1,538 gr/cm³. Abstract Land is one of the many varied material (heterogeneous) between one site and another location., then in this research performs addition material of white sand is then blended with the native soil that comes from the village of Karau Kuala Kecapamatan District Bangkuang Barito South. Research activities carried out in the laboratory of Geotechnical and transportation State Polytechnic Banjarmasin includes several methods of pungujian conducted in accordance with the standards of research, namely: in accordance with the SNI 03-1965-2008, SNI 03-1964-2008, SNI 03-1967-2008, SNI 03-1965-2008, SNI 03-1743-2008, SNI 03-1738-2011, and SNI 2828:2011. Results of the study, with the addition of white sand is very influential towards the improvement of the nature – nature of the land to be used for subgredre stabilization materials, then obtained the value soil properties are given materials white sand (0%) include; moisture content (W) 23.87%, heavy types (Gs) 2.59, liquid limit (LL) 33.9%, limits plastis (PL) 20.11%, plasticity index (PI) 13.79%, optimum moisture content (OMC) 18.6%, maximum dry density (/dMax) 1.61 Gr/Cm3 and CBR design 5%. The value soil properties are given the added ingredient of white sand. The value soil properties are given the added ingredient of white sand (15%) include; the weight of the combined type (Gs) 2.62, liquid limit (LL) 29.6%, limits plastis (PL) 19.52%, plasticity index (PI) 10.08%, optimum moisture content (Omc) 81.5%, maximum dry density (/dMax)) 1.54 Gr/Cm3 and CBR design 6.1%, weight dry (/d) 1.538 gr/cm ³.


2019 ◽  
Vol 4 (1) ◽  
Author(s):  
Anigilaje B Salahudeen ◽  
Ja’afar A Sadeeq

The study investigate the suitability of subgrade soil in Baure Local Government Area of Kastina State Nigeria for road construction. The strength properties of the  subgrade was improved using lime and cement. Several analysis including the particle size distribution, specific gravity, Atterberg limits, compaction characteristics, unconfined compressive strength and California bearing ratio tests were performed on natural and lime/cement treated soil samples in accordance with BS 1377 (1990) and BS 1924 (1990) respectively. Soil specimens were prepared by mixing the soil with lime and cement in steps of 0, 3, 6, and 9% by weight of dry soil in several percentage combinations. The Atterberg limits of the weak subgrade soils improved having a minimum plasticity index value of 5.70 % at 3%Lime/6%Cement contents. The maximum dry density (MDD) values obtained showed a significant improvement having a peak value of 1.66 kN/m3 at 9%Lime/9%Cement contents. Similarly, a minimum value of 18.50 % was observed for optimum moisture content at 9%Lime/9%Cement contents which is a desirable reduction from a value of 25.00 % for the natural soil. The unconfined compressive test value increased from 167.30 kN/m2 for the natural soil to 446.77 kN/m2 at 9%Lime/9%Cement contents 28 days curing period. Likewise, the soaked California bearing ratio values increased from 2.90 % for the natural soil to 83.90 % at 9%Lime/9%Cement contents. Generally, there were improvements in the engineering properties of the weak subgrade soil when treated with lime and cement. However, the peak UCS value of 446.77 kN/m2 fails to meet the recommended UCS value of 1710 KN/m2 specified by TRRL (1977) as a criterion for adequate stabilization using Ordinary Portland Cement.            Keywords: Weak subgrade soil, Lime, Cement, Atterberg limits, Maximum dry density, Optimum moisture content, Unconfined compressive strength, California bearing ratio


2020 ◽  
Vol 3 ◽  
pp. 12-25
Author(s):  
Olaoluwa Oluwaniyi ◽  
Imoleayo Fatoyinbo ◽  
Akinola Bello ◽  
Joshua Owoseni

Failure of highway pavement and collapse of building in basement complex of Nigeria is often related to the instability of the residual. This study evaluated the strength characteristics of gneiss-derived residual Soils as materials usable for road pavement structures. A total of eleven soil samples derived from granite gneiss were subjected to laboratory geotechnical analyses based on standard practices. The geotechnical analyses reveal the soils’ natural moisture content, specific gravity, grain sizes, consistency limits, shearing strengths, maximum dry density, and optimum moisture content. Based on AASHTO classification, the soil samples are classified as A-7-6, A-6, and A-7-5. The results of the laboratory analyses revealed that the natural moisture content and specific gravity ranged from 8.30 to 22.70% and 2.6 to 2.8 respectively. Particle size analysis reveals that the coarse contents of the soils ranged from 28.8% to 59.8% and amount of fines ranged from 40.2 to 71.2%. The liquid limit ranged from 31.3% to 68.3%, plastic limit ranged from 20% to 28.0%, plasticity index ranged from 4.8% to 38.90% and linear shrinkage ranged from 5.7 to 13.6%. The maximum dry density ranged from 1481 kg/m3 to 1921 kg/m3 and optimum moisture content ranged from 15.2% to 27.6%. Undrained triaxial shear strength (Cu) ranged from 43.0 Kpa to 250.3Kpa, angle of friction ranges from 11.7 to 29.30, and unconfined compressive strength ranged from 153 to 356.5Kpa. The results indicate that the residual soils are poor sub-grade and foundation materials due to their high amount of fines, linear shrinkage values, plasticity, and swelling potential, as well as low maximum dry density.


2021 ◽  
Vol 107 ◽  
pp. 85-96
Author(s):  
Joseph A. Ige

This study assessed the effect of potassium hydroxide on geotechnical properties of Biomass fuel ash stabilized lateritic soil. In-situ tests were conducted on the original soil sample for identification and classification purposes. The soil sample was classified as A-2-6. Thereafter, the soil sample was mixed with both Biomass fuel ash and Potassium hydroxide at percentages of 0, 5, 10, 15 and 0, 3, 6, 9 respectively. These were later subjected to various tests such as natural moisture content, specific gravity, sieve analysis, Atterberg limit and compaction .The result showed that the addition of Biomass fuel ash increases the Plastic limit but decreases the plasticity index of the lateritic soil. Similarly, the addition of potassium hydroxide increases the plastic limit while the plasticity index decreases.The addition of Biomass fuel ash increases the optimum moisture content while the maximum dry density decreases. Similarly, the addition of potassium hydroxide increases the optimum moisture content however the maximum dry density decreases. It could be concluded that both Biomass fuel ash and Potassium hydroxide perform satisfactorily as stabilizing agents for stabilizing lateritic soil especially for subgrade and sub base purposes in road construction


2012 ◽  
Vol 170-173 ◽  
pp. 482-485
Author(s):  
Yi Wen ◽  
Yong He Wang ◽  
Hong Bing Xiao ◽  
Chang Zi Qu

In this paper, through the indoor experiment study of compaction characteristics of completely weathered granite improved soil, analyse the relation of the maximum dry density and the optimum moisture content with lime and cement content, and through the fitting working out the relation curves and fitting formula of the improved soil of the maximum dry density and the optimum moisture content with lime and cement content . Provide reference for similar engineering.


1997 ◽  
Author(s):  
◽  
Anthony James Allinsin

The strength and durability of any soil structure is dependent on the quality of the compaction of the soil. This quality is measured by employing a standard compaction test, which provides a standard with which density may be compared, called the maximum dry density, and the moisture content of the soil at which this is achieved, called the optimum moisture content. As a matter of routine during quality control, the particle size distribution, plasticity index and liquid limit of the soil are determined at the same time as its maximum dry density and optimum moisture content.


Author(s):  
S.V. Satyanarayana ◽  
Mohammed Al Jahwari

In the Gulf region most of the soils require soil stabilization to increase soil bearing capacity for construction of safe and sustainable buildings. The soils are stabilized either by physical stabilization, chemical stabilization or by mechanical stabilization. The aim of this project is to stabilize calcareous soil in the Barka region with synthetic polymers. The soil samples from the Barka region collected by using standard soil sampling methods. The synthetic polymer was mixed with the calcareous soil in 1%, 3% and 5%. The soil samples were tested for sieve analysis, Atterberg Limit, Particle Density, Proctor test and California Bearing Ratio test before and after addition of synthetic polymer. It was observed that there is a positive impact on the geotechnical properties of soil with the addition of Polymer. The optimum moisture content of the soil reduced and the maximum dry density of the soil increased. The optimum results were found at 5% addition of polymer where the optimum moisture content was found out to be 12.6% and the maximum dry density was found out to be 1.997 Mg/m3. The Atterberg limit test to show that the plasticity index of the soil reduced with the addition of polymer and the optimum results were found out at 5% addition of polymer. Finally, the CBR test results determine that the soil bearing capacity increases with the addition of Polymer. After the addition of 5% Polymer, the CBR value was found out to be 27.465% compared to 14.19% for the fresh calcareous soil. The results are encouraging. Keywords: Atterberg Limit, Calcareous soil, CBR, polymer, stabilization.


Sign in / Sign up

Export Citation Format

Share Document