scholarly journals A Correlation between Compaction Characteristics and Soil Index Properties for Fine-grained Soils

2019 ◽  
Vol 9 (2) ◽  
pp. 93-99
Author(s):  
Hunar F. Hama Ali ◽  
Ahmed J. Hama Rash ◽  
Madeh I. Hama kareem ◽  
Daban A. Muhedin

This paper addresses the correlation between the liquid and/or plastic limits with the compaction characteristics, maximum dry density, and optimum moisture content (OMC), for fine-grained soils. In the previous studies, several attempts have been made to identify these two important parameters from other simple soil properties such as index soil properties. Some concluded that liquid limit shows a good correlation with compaction characteristics, while others observed that plastic limit does. In this work, many soil samples have been taken from various locations around Koya city and the required tests have been carried out. The results have been illustrated to identify whether soil index properties can correlate with the compaction characteristics. It is concluded that neither plastic limit nor liquid limit can provide an adequate correlation with maximum dry density and OMC. Contrary to the literature, liquid limit provides better correlations.

2020 ◽  
Vol 8 (1) ◽  
pp. 22
Author(s):  
G.O Adunoye ◽  
A.A Ojo ◽  
A.F Alasia ◽  
M.O Olarewaju

The importance of soil compaction for civil engineering construction and application cannot be over-emphasised. To perform soil compaction, numerous number of samples are required, with considerable time and laborious laboratory activities. This has necessitated the need to find models for the prediction of compaction characteristics, using easily determined soil properties. This work therefore undertook a study of the correlation potential of compaction characteristics and Atterberg limits of soils, with a view to modelling compaction characteristics, using Atterberg limits. To achieve this aim, soil samples were obtained from selected locations within Obafemi Awolowo University campus, Ile-Ife, Nigeria. Preliminary, Atterberg limits and compaction tests were conducted on the soil samples, using standard procedure. Using Microsoft Excel and Xuru’s Regression tool, the laboratory test results were used to develop relationships between compaction characteristics (optimum moisture content and maximum dry density) and Atterberg limits (liquid limit and plastic limit). Results showed that the natural moisture content of soil samples ranged between 4.97 % and 19.72 %; liquid limit ranged between 27 % and 68 %; plastic limit ranged between 18.92 % and 63.01 %; and plasticity index ranged between 0.94 % and 14.63 %. The optimum moisture content ranged between 6.7 % and 27 %, while the maximum dry density ranged between 1560 kN/m3 and 2260 kN/m3. The results of regression analysis showed that the combination of liquid limit and plastic limit has a strong correlation with optimum moisture content (R2 = 0.870); while the combination (of liquid limit and plastic limit) showed a weak correlation with maximum dry density (R2 = 0.150). The study concluded that liquid limit and plastic limit could be used to estimate the optimum moisture content of the soils, by applying the developed relationship/equation.  


2019 ◽  
Vol 3 (2) ◽  
pp. 1-7
Author(s):  
Syahdi Syahdi ◽  
Muhammad Suhaimi

Tanah merupakan salah satu dari sekian banyak material yang bervariasi (heterogen) antara satu lokasi dengan lokasi yang lain., maka dalam penelitian ini melakukan penambahan material pasir putih yang kemudian dicampurkan dengan tanah asli yang berasal dari desa Bangkuang Kecapamatan Karau Kuala Kabupaten Barito selatan. Kegiatan penelitian dilakukan di laboratorium Geoteknik dan Transportasi Politeknik Negeri Banjarmasin meliputi beberapa metode pungujian dilakukan sesuai dengan standar penelitian yaitu: SNI 03-1965-2008, SNI 03-1964-2008, SNI 03-1967-2008, SNI 03-1965-2008,SNI 03-1743-2008 SNI 03-1738-2011, dan SNI 2828:2011.  Hasil penelitian, dengan penambahan pasir putih sangat berpengaruh terhadap perbaikan sifat – sifat tanah yang akan digunakan untuk bahan stabilisasi subgredre,   maka didapat nilai sifat-sifat tanah diberi bahan pasir putih (0%) meliputi; kadar air (W) 23,87%, berat jenis (Gs) 2,59, batas cair (LL) 33,9%, batas plastis (PL) 20,11%, plastisitas indeks (PI) 13,79%, kadar air optimum (OMC) 18,6%, kepadatan kering maksimum (dMax) 1,61 Gr/Cm3 dan CBR desain 5%. Nilai sifat-sifat tanah diberi bahan tambah pasir putih. Nilai sifat-sifat tanah diberi bahan tambah pasir putih (15%) meliputi; berat jenis gabungan (Gs) 2,62, batas cair (LL) 29,6%, batas plastis (PL) 19,52%, plastisitas indeks (PI) 10,08%, kadar air optimum (Omc) 81,5%, kepadatan kering maksimum (dMax)) 1,54 Gr/Cm3 dan CBR desain 6,1%, berat isi kering (d) 1,538 gr/cm³. Abstract Land is one of the many varied material (heterogeneous) between one site and another location., then in this research performs addition material of white sand is then blended with the native soil that comes from the village of Karau Kuala Kecapamatan District Bangkuang Barito South. Research activities carried out in the laboratory of Geotechnical and transportation State Polytechnic Banjarmasin includes several methods of pungujian conducted in accordance with the standards of research, namely: in accordance with the SNI 03-1965-2008, SNI 03-1964-2008, SNI 03-1967-2008, SNI 03-1965-2008, SNI 03-1743-2008, SNI 03-1738-2011, and SNI 2828:2011. Results of the study, with the addition of white sand is very influential towards the improvement of the nature – nature of the land to be used for subgredre stabilization materials, then obtained the value soil properties are given materials white sand (0%) include; moisture content (W) 23.87%, heavy types (Gs) 2.59, liquid limit (LL) 33.9%, limits plastis (PL) 20.11%, plasticity index (PI) 13.79%, optimum moisture content (OMC) 18.6%, maximum dry density (/dMax) 1.61 Gr/Cm3 and CBR design 5%. The value soil properties are given the added ingredient of white sand. The value soil properties are given the added ingredient of white sand (15%) include; the weight of the combined type (Gs) 2.62, liquid limit (LL) 29.6%, limits plastis (PL) 19.52%, plasticity index (PI) 10.08%, optimum moisture content (Omc) 81.5%, maximum dry density (/dMax)) 1.54 Gr/Cm3 and CBR design 6.1%, weight dry (/d) 1.538 gr/cm ³.


2021 ◽  
Vol 24 (2) ◽  
pp. 123-129
Author(s):  
Kamal Ahmed Rashed ◽  
Nihad Bahaaldeen Salih ◽  
Tavga Aram Abdalla

Soil’s characteristics are essential for the successful design of projects such as airports runway and flexible pavement. CBR (California Bering Ratio) is one of the significant soil characteristics for highways and airports projects. Thus, the CBR property can be used to determine the subgrade reaction of soil through correlations. Many of the soil geotechnical parameters such as compaction characteristics (Maximum Dry Density, MDD; Optimum Moisture Content, OMC), and consistency parameters (Liquid Limit, LL; Plastic Limit, PL; Plasticity Index, PI) can be in charge of changes that happen in soil CBR value. Soaked and/or non-soaked conditions of soils also affect CBR value. Hence, testing soils in a laboratory for CBR calculation is time-consuming that needs notable effort. Therefore, this study aims to generate some useful correlations for soil’s CBR with compaction and consistency parameters for 85 samples of fine-grained soils. The study trials were applied on natural soil samples of various places in Sulaimani Governorate, Northern Iraq. Statistical analysis has been carried out by using SPSS software (Version 28). Soaked CBR is counted, which is important for conditions such as rural roads that remain prone to water for few days. Based on the statistical analysis, there is a significant correlation between LL, PL, PI, MDD, and OMC with CBR as the dependent variable as a single variable equation with R2 of  0.7673, 0.5423, 0.5192, 0.6489, and 0.51, respectively. In addition, the highest value of R2 correlation was obtained between CBR value with consistency and compaction properties as a multiple regression equation with R2 of 0.82. The obtained equations for correlation purposes are successfully achieved and can be used, notably, to estimate CBR value.


2018 ◽  
Vol 250 ◽  
pp. 01008
Author(s):  
Tuan Noor Hasanah Tuan Ismail ◽  
Siti Aimi Nadia Mohd Yusoff ◽  
Ismail Bakar ◽  
Devapriya Chitral Wijeyesekera ◽  
Adnan Zainorabidin ◽  
...  

Soils at many sites do not always have enough strength to bear the structures constructed over them and some of the soil may need to be stabilized in order to improve their geotechnical properties. In this paper, routine laboratory tests were critically carried out to investigate the efficacy of lignin in improving the strength behaviour of the soils. Two different soil samples (laterite and kaolin) were studied and mixed with different proportions of lignin (2% and 5% of dry weight of soil), respectively. Unconfined Compressive Strength (UCS) characteristics evaluated in this study were done on samples at their maximum dry density and optimum moisture content (obtained from compaction tests). The UCS tests on all the specimens were carried out after 0, 7, 15, 21 and 30 days of controlled curing. The research results showed that the addition of lignin into kaolin reduced its maximum dry density while giving progressively higher optimum moisture content. Contrarily, with the laterite soil, both maximum dry density and optimum moisture content simultaneously increased when lignin was added into the soils. The UCS results showed that the the stabilized laterite with 2% lignin continued to gain strength significantly at a fairly steady rate after 7 days. Unfortunately, lignin did not show a significant effect in kaolin.


2021 ◽  
Vol 40 (1) ◽  
pp. 28-38
Author(s):  
Pascal Ambrose ◽  
Siya Rimoy

California Bearing Ratio (CBR) laboratory testing is the conventional method for determining soaked strengths of pavement subgrades. The test requires careful preparation of soil samples followed by four days of water soaking before penetrating the samples using a standard plunger at prescribed rates to set depths. When the number of samples becomes large the determination of soaked CBR values becomes cumbersome as the test is laborious and time consuming. This study aimed at establishing an alternative way of determining soaked CBR by developing a model that would be used for estimating soaked CBR of fine- and coarse- grained soils without performing the CBR test. This has been achieved by correlating CBR values compacted at 95% Maximum Dry Density (MDD) with the soil index properties. The results show that soaked CBR values of fine-grained soils significantly correlate with specific gravity of soil (GS), Plasticity index (PI) and the grading modulus (GM) of the soil that yields a degree of determination of R2 = 0.91 and for coarse grained (A-2 type) soil, the soaked CBR values significantly correlate with specific gravity of soil and percentage of fines passing 0.075mm sieve size that yields a degree of determination of R2= 0.94.


2020 ◽  
Vol 3 ◽  
pp. 12-25
Author(s):  
Olaoluwa Oluwaniyi ◽  
Imoleayo Fatoyinbo ◽  
Akinola Bello ◽  
Joshua Owoseni

Failure of highway pavement and collapse of building in basement complex of Nigeria is often related to the instability of the residual. This study evaluated the strength characteristics of gneiss-derived residual Soils as materials usable for road pavement structures. A total of eleven soil samples derived from granite gneiss were subjected to laboratory geotechnical analyses based on standard practices. The geotechnical analyses reveal the soils’ natural moisture content, specific gravity, grain sizes, consistency limits, shearing strengths, maximum dry density, and optimum moisture content. Based on AASHTO classification, the soil samples are classified as A-7-6, A-6, and A-7-5. The results of the laboratory analyses revealed that the natural moisture content and specific gravity ranged from 8.30 to 22.70% and 2.6 to 2.8 respectively. Particle size analysis reveals that the coarse contents of the soils ranged from 28.8% to 59.8% and amount of fines ranged from 40.2 to 71.2%. The liquid limit ranged from 31.3% to 68.3%, plastic limit ranged from 20% to 28.0%, plasticity index ranged from 4.8% to 38.90% and linear shrinkage ranged from 5.7 to 13.6%. The maximum dry density ranged from 1481 kg/m3 to 1921 kg/m3 and optimum moisture content ranged from 15.2% to 27.6%. Undrained triaxial shear strength (Cu) ranged from 43.0 Kpa to 250.3Kpa, angle of friction ranges from 11.7 to 29.30, and unconfined compressive strength ranged from 153 to 356.5Kpa. The results indicate that the residual soils are poor sub-grade and foundation materials due to their high amount of fines, linear shrinkage values, plasticity, and swelling potential, as well as low maximum dry density.


2020 ◽  
Vol 6 ◽  
pp. 24-32
Author(s):  
Muhammad Israil ◽  
Muhammad Ashraf ◽  
Muhammad Fahim ◽  
Rashid Rehan ◽  
Sajjad Wali Khan ◽  
...  

This study presents experimental investigation of indigenous clays mixed with Bentonite to assess their suitability in potential use as clay liners. Soil samples with 0, 4, 8, and 12% Bentonite content from three different sites in Peshawar region were tested for various geotechnical properties. Grain size distribution, specific gravity, Atterberg limits and free swell were found through laboratory tests using appropriate ASTM procedures. Maximum dry density and optimum moisture content were calculated using Atterberg limits in available relationships. Finally, one dimensional consolidation tests were conducted to find relevant parameters for calculating hydraulic conductivity. A decrease in specific gravity, increase in free swell, and in optimum moisture content, decline in maximum dry density and hydraulic conductivity was observed with increase in Bentonite content across all three soil samples. During free swell, the soil clusters become larger leading to formation of floccules resulting in the narrowing of inter-particle space and thus blocking of permeable paths. It is concluded that 8% Bentonite content by weight yields a suitable mixture for a clay liner that has hydraulic conductivity in the range of recommended limits.


Lateritic soils at Otun Ekiti, Ekiti state, southwestern Nigeria were investigated with respect to their geotechnical properties and their suitability for subgrade and sub – base construction materials. Four disturbed lateritic soil samples (sample A, B, C and D) were selected for the various laboratory techniques. The grain size analyses, the specific gravity tests, the atterberg limit tests, compaction, California bearing ratio and shear box tests were carried out on the samples. The grain size analysis shows that sample A is gravelly silt-clayey sand. Sample B is silt – clayey gravel composition. Sample C is gravelly silt-clayey while Sample D is silt-clayey gravel. Atterberg consistency limit test indicate that sample A has 30.0%, liquid limit 19.5% plastic limit, 10.5% plasticity index, 9.1% shrinkage limit. Sample B has liquid limit of 27.0%, 16.2% plastic limit, 10.8% plasticity index and 7.4% shrinkage limit. Sample C has a liquid limit of 32.4%, plastic limit of 15.6%. It has a plastic index of 16.8%, Shrinkage limit of 9.7% while Sample D has a liquid limit of 36.2%, plastic limit of 17.7%. It has a plastic index of 18.5% and 11.1% as shrinkage limit. Thus, the soil is classified to be intermediate plasticity which can be used for sub – grade and sub – base materials. The soil samples are above the activity (A) line in the zone of intermediate plasticity (CL) which suggests that they are inorganic soils. Based on engineering use chart, the workability as construction engineering is good to fair particularly as erosion resistance in canal construction. However, the high shrinkage limit may also reduce erosion in this area because of cohesion of the plastic clay material. The California Bearing Ratio (CBR) values are within 2 – 3% (mean = 2.75%) and 2 - 4% (mean = 2.75%) in sample A and sample B respectively while California Bearing Ratio (CBR) of 2 - 4% (mean = 2.75%) and 2 – 3% (mean = 2.75%) in sample C and sample D respectively. This implies that the materials can be used as a sub-grade to base course material for support of flexible pavements. The compaction tests for the optimum water content for sample A is 15.0% and 13.0% for standard and modified proctor respectively. The standard and modified proctor for sample B is 15.0% and 14.0% respectively. The compaction tests for the optimum water content for sample C and D is 15.0% and 14.0% for standard and modified proctor respectively. The compaction tests for Sample A indicate a higher fine fraction and thus a higher optimum moisture content while sample B, C and D has higher coarse fraction with lower optimum moisture content. The cohesion falls within 70-90Kpa (mean = 79Kpa) and the angle of internal friction ranges from 260 - 320 with mean of 280 for standard and modified compaction energies respectively. The results obtained from geotechnical analysis suggest that the soil is good to fair as erosion resistance in canal construction because of its high bearing capacity and it can also be used as sub – grade and base course in road construction. Keywords: Lateritic soil, Construction, Erosional and Geotechnical.


we have done some experiments on black cotton soil to strengthen the soil. Black cotton soil is very expansive soil so it is not used under basements for any building works. So our experiment shows that how to use black cotton soil in building purposes. So that we have done researches on adding lime and pond ash to make useful of black cotton soil.Changes in various soil properties such as Liquid limit, Plastic Limit, Maximum Dry Density, Optimum Moisture Content were studied. Keywords– Black cotton soil, density, will lime, soil, and stabilization. So we have done the some mixed proportions of 10%, 15% and 20% of pond and lime. So we utilize the waste material which comes from the thermal power plant. By that we can decrease the rate of expenditure for the construction of roads Based upon the performance of the test such as standard proctor test and other to know the required amount of the material to stabilize the black cotton soil.


2021 ◽  
Vol 107 ◽  
pp. 85-96
Author(s):  
Joseph A. Ige

This study assessed the effect of potassium hydroxide on geotechnical properties of Biomass fuel ash stabilized lateritic soil. In-situ tests were conducted on the original soil sample for identification and classification purposes. The soil sample was classified as A-2-6. Thereafter, the soil sample was mixed with both Biomass fuel ash and Potassium hydroxide at percentages of 0, 5, 10, 15 and 0, 3, 6, 9 respectively. These were later subjected to various tests such as natural moisture content, specific gravity, sieve analysis, Atterberg limit and compaction .The result showed that the addition of Biomass fuel ash increases the Plastic limit but decreases the plasticity index of the lateritic soil. Similarly, the addition of potassium hydroxide increases the plastic limit while the plasticity index decreases.The addition of Biomass fuel ash increases the optimum moisture content while the maximum dry density decreases. Similarly, the addition of potassium hydroxide increases the optimum moisture content however the maximum dry density decreases. It could be concluded that both Biomass fuel ash and Potassium hydroxide perform satisfactorily as stabilizing agents for stabilizing lateritic soil especially for subgrade and sub base purposes in road construction


Sign in / Sign up

Export Citation Format

Share Document