Emerging Potable Water Technologies

2016 ◽  
Vol 1 (2) ◽  
pp. 113 ◽  
Author(s):  
Anuradha Baghel ◽  
Beer Singh

Water is essential to keep up life, especially safe drinking water is one of the first priorities. As water quality is important, many nations endeavor to guard the water and to increase access to potable water. Fortification of water supplies from contamination is the earliest stripe of defence. Water purification is very important aspect, presently there are number of drinking water technologies available mostly based on ion exchange, ultra filtration and reverse osmosis techniques, but still about five million people die annually from water born diseases. The objective of this review is to provide direction on the chemical safety of drinking-water and also monitoring of chemicals in drinking-water. Water treatment potential technologies can solve diverse drinking water issues in case of chemical contamination, which is the second objective. The purpose of this review is to make survey of currently available and future emerging technologies for drinking water. Several purification techniques have been adopted to meet the standards. There is a necessity of wide-ranging global approach to tackle the problem of water pollution devastating thousand of lives annually rather than to develop nuclear and biological weapons. This document will also be useful to public health authorities, those responsible for setting standards and for surveillance of drinking-water quality, and to water supply agencies responsible for water quality management.

2013 ◽  
Vol 53 (1) ◽  
pp. 407
Author(s):  
Chris Hewitson ◽  
Eva Dec ◽  
Tony Lines

This peer-reviewed paper examines the risks and responsibilities of water providers and the process resource companies should undertake to document how they will deliver a safe and secure water supply to their employees and contractors, and the communities in which they operate, thereby reducing the risks of water quality incidents and managing the impact to the organisation should an incident occur. Water quality incidents can have major impacts to human health and the brand perception of the resource company supplying the water, and can potentially shutdown resource abstraction. Resource companies have a duty of care to provide a secure and safe drinking water supply. This is reinforced by state health departments directing resource organisations to comply with the Australian Drinking Water Guidelines (ADWG), which were updated in 2011 (National Health and Medical Research Council, 2011). Organisations in the CSG industry experience an additional challenge—managing water by-product from gas extraction. There are drivers for the beneficial use of this water—including irrigation, aquifer recharge and municipal supply—resulting in changes to legislation in Queensland (DERM, 2010) that require a process similar to ADWG recommendations, where beneficial use or disposal may impact potable supplies. The ADWG provides clear guidance to potable water providers—whether they are supplying a few consumers or major towns requiring a Drinking Water Quality Management System (DWQM System). This guidance includes documenting a clear process to securing a clean water source, making the water safe to consume and proving it is safe. Developing a DWQM System enables resource companies to understand issues in supplying drinking water through regular review and improvement, while minimising and managing the health risks to consumers.


2015 ◽  
Vol 2015 (2) ◽  
pp. 1-9 ◽  
Author(s):  
Carla Cherchi ◽  
Mohammad Badruzzaman ◽  
Joan Oppenheimer ◽  
Matthew Gordon ◽  
Simon Bunn ◽  
...  

2021 ◽  
Vol 15 (4) ◽  
pp. 168-176
Author(s):  
M. G. Daudova ◽  
R. B. Bagomedova ◽  
K. K. Bekshokov ◽  
M. M. Medzhidova ◽  
S. M. Nakhibashev ◽  
...  

Aim. Study of the influence of drinking water quality on the ecologically-dependent morbidity of the population of the Republic of Dagestan.Material and Methods. Methods of current and retrospective analysis of regional health indicators and methods of mathematical-statistical and medical-geographical analysis were used. Statistical processing of the results was carried out using the STATISTICA and Excel software packages. When carrying out laboratory studies on the quality of drinking water, we used a Lumex atomic absorption spectrometer "MGA-915MD".Results. Numerous hygiene studies indicate the direct impact of unsatisfactory drinking water quality on the health of a population. The relationship between sanitary and chemical indicators and the incidence rate for a number of nosological forms has been proven. It is generally accepted that human health is influenced by lifestyle factors (working, living and relaxation conditions), heredity and the ecological condition of the area of residence, including the quality of drinking water. Although it is not possible to differentiate the share of the negative effect caused by the consumption of poor quality drinking water but the incidence of certain nosological forms (cancer of the esophagus, gastrointestinal tract and kidney diseases) in the those regions of the Republic of Dagestan under consideration correlates with the characteristics of drinking water.Conclusion. The problem of pollution of water supply sources for the population in the dynamics of the long-term remains a priority concern. The quality and safety of drinking water are decreasing, which cannot but have a negative impact on public health. Correlation linkages between indicators of drinking water quality and oncological morbidity of the population were also established in indicators below the maximum permissible concentrations, which corresponds to a typical logistic model of causal relationships and serves as evidence of the high dependence of health disorders on chemical contamination of water supply sources. 


2019 ◽  
Vol 13 (28) ◽  
pp. 116-124
Author(s):  
Zainab Bahaa Mohammed

In this research, the water quality of the potable water network inAl-Shuala Baghdad city were evaluated and compare them with theIraqi standards (IQS) for drinking water and World HealthOrganization standards (WHO), then water quality index (WQI) werecalculator: pH, heavy metals (lead, cadmium and iron), chlorides,total hardness, turbidity, dissolved oxygen, total dissolved solid andelectrical conductivity. Water samples are collected weekly duringthe period from February 2015 to April 2015 from ten sites. Resultsshow that the chlorides, total dissolved solid and electricalconductivity less than acceptable limit of standards, but totalhardness and heavy metals in some samples higher than acceptablelimit of standards while the other parameter is good.WQI shows thatresults is excellent and good for drinking for all location and monthsexcept site (2) gave higher value (65.184) in March and site (9) gavehigh value (57.78, 57.23) at March and April indicate that sites ispoor for drinking water.


Sign in / Sign up

Export Citation Format

Share Document