Advances in the Value Addition to Foods-recent Trends

2017 ◽  
Vol 2 (2) ◽  
pp. 90
Author(s):  
K. R. Anilakumar ◽  
Natarajan Gopalan ◽  
R. K. Sharma

Value addition to foods may be done by several ways. It could be done by the use of preservative, food ingredients capable of eliciting functionalities and by fortification using micronutrients. There are novel and emerging food processing technologies that are possible to preserve the ingredients in the food intact. The shelf life enhancement of the processed food can be done by adapting newer packaging technologies. Food processing industries in many of the countries across the world generates huge quantity of by-products that can be put into use by value addition. These by-products have less use and create considerable environmental pollution. The by-products of the fruits, vegetables, etc. may be used for value addition adapting commercially viable approaches. Fermented foods are value added foods that could be developed using novel starters. It is also important to note the regulatory aspects of foods whenever the foods are preserved b y value addition

Nutrients ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 3948
Author(s):  
Francesco Capozzi ◽  
Faidon Magkos ◽  
Fabio Fava ◽  
Gregorio Paolo Milani ◽  
Carlo Agostoni ◽  
...  

Ultra-processed foods (UPFs) are negatively perceived by part of the scientific community, the public, and policymakers alike, to the extent they are sometimes referred to as not “real food”. Many observational surveys have linked consumption of UPFs to adverse health outcomes. This narrative synthesis and scientific reappraisal of available evidence aims to: (i) critically evaluate UPF-related scientific literature on diet and disease and identify possible research gaps or biases in the interpretation of data; (ii) emphasize the innovative potential of various processing technologies that can lead to modifications of the food matrix with beneficial health effects; (iii) highlight the possible links between processing, sustainability and circular economy through the valorisation of by-products; and (iv) delineate the conceptual parameters of new paradigms in food evaluation and classification systems. Although greater consumption of UPFs has been associated with obesity, unfavorable cardiometabolic risk factor profiles, and increased risk for non-communicable diseases, whether specific food processing techniques leading to ultra-processed formulations are responsible for the observed links between UPFs and various health outcomes remains elusive and far from being understood. Evolving technologies can be used in the context of sustainable valorisation of food processing by-products to create novel, low-cost UPFs with improved nutritional value and health potential. New paradigms of food evaluation and assessment should be funded and developed on several novel pillars—enginomics, signalling, and precision nutrition—taking advantage of available digital technologies and artificial intelligence. Research is needed to generate required scientific knowledge to either expand the current or create new food evaluation and classification systems, incorporating processing aspects that may have a significant impact on health and wellness, together with factors related to the personalization of foods and diets, while not neglecting recycling and sustainability aspects. The complexity and the predicted immense size of these tasks calls for open innovation mentality and a new mindset promoting multidisciplinary collaborations and partnerships between academia and industry.


2022 ◽  
Vol 14 (2) ◽  
pp. 605
Author(s):  
Meththa Ranasinghe ◽  
Ioannis Manikas ◽  
Sajid Maqsood ◽  
Constantinos Stathopoulos

Date (Phoenix dactylifera L. Arecaceae) fruits and their by-products are rich in nutrients. The health benefits of dates and their incorporation into value-added products have been widely studied. The date-processing industry faces a significant sustainability challenge as more than 10% (w/w) of the production is discarded as waste or by-products. Currently, food scientists are focusing on bakery product fortification with functional food ingredients due to the high demand for nutritious food with more convenience. Utilizing date components in value-added bakery products is a trending research area with increasing attention. Studies where the researchers tried to improve the quality of bakery goods by incorporating date components have shown positive results, with several drawbacks that need attention and further research. The objective of this review is to present a comprehensive overview of the utilization of date components in bakery products and to identify gaps in the current knowledge. This review will help focus further research in the area of valorization of date by-products and thereby contribute to the generation of novel functional bakery products that meet consumer expectations and industry standards, thus generating income for the relevant industry and considerable alleviation of the environmental burden this waste and by-products contribute to. Only a few studies have been focused on utilizing date by-products and their extracts for baked goods, while a research area still remaining under-explored is the effect of incorporation of date components on the shelf life of bakery products.


2019 ◽  
Vol 6 ◽  
Author(s):  
Fereidoon Shahidi ◽  
Vamadevan Varatharajan ◽  
Han Peng ◽  
Ruchira Senadheera

The world fisheries resources have exceeded 160 million tons in recent years. However, every year a considerable amount of total catch is discarded as by-catch or as processing leftovers, and that includes trimmings, fins, frames, heads, skin, viscera and among others. In addition, a large quantity of processing by-products is accumulated as shells of crustaceans and shellfish from marine bioprocessing plants. Recognition of the limited marine resources and the increasing environmental pollution has emphasized the need for better utilization of the by-products. Marine by-products contain valuable protein and lipid fractions, minerals, enzymes as well as many other components. The major fraction of by-products are used for feed production—in making fish meal/oil, but this has low profitability. However, there are many ways in which the fish and shellfish waste could be better utilized, including the production of novel food ingredients, nutraceuticals, pharmaceuticals, biomedical materials, fine chemicals, and other value-added products. In recent times, much research is conducted in order to explore the possible uses of different by-products. This contribution primarily covers the characteristics and utilization of the main ingredients such as protein, lipid, chitin and its derivatives, enzymes, carotenoids, and minerals originating from marine by-products.


2022 ◽  
pp. 83-100
Author(s):  
Paula Jauregi ◽  
Carmen Alvarez-Ossorio ◽  
Carlos Bald ◽  
Jone Ibarruri ◽  
Bruno Iñarra ◽  
...  

2019 ◽  
Vol 6 ◽  
Author(s):  
Fereidoon Shahidi ◽  
Vamadevan Varatharajan ◽  
Han Peng ◽  
Ruchira Senadheera

The world fisheries resources have exceeded 160 million tons in recent years. However, every year a considerable amount of total catch is discarded as by-catch or as processing leftovers, and that includes trimmings, fins, frames, heads, skin, viscera and among others. In addition, a large quantity of processing by-products is accumulated as shells of crustaceans and shellfish from marine bioprocessing plants. Recognition of the limited marine resources and the increasing environmental pollution has emphasized the need for better utilization of the by-products. Marine by-products contain valuable protein and lipid fractions, minerals, enzymes as well as many other components. The major fraction of by-products are used for feed production—in making fish meal/oil, but this has low profitability. However, there are many ways in which the fish and shellfish waste could be better utilized, including the production of novel food ingredients, nutraceuticals, pharmaceuticals, biomedical materials, fine chemicals, and other value-added products. In recent times, much research is conducted in order to explore the possible uses of different by-products. This contribution primarily covers the characteristics and utilization of the main ingredients such as protein, lipid, chitin and its derivatives, enzymes, carotenoids, and minerals originating from marine by-products.


2018 ◽  
Vol 9 (1) ◽  
pp. 503-523 ◽  
Author(s):  
Lauryn G. Chan ◽  
Joshua L. Cohen ◽  
Juliana Maria Leite Nobrega de Moura Bell

Biomolecules ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 887 ◽  
Author(s):  
Agne Katileviciute ◽  
Gediminas Plakys ◽  
Aida Budreviciute ◽  
Kamil Onder ◽  
Samar Damiati ◽  
...  

Recently more consideration has been given to the use of renewable materials and agricultural residues. Wheat production is increasing yearly and correspondingly, the volume of by-products from the wheat process is increasing, as well. It is important to find the use of the residuals for higher value-added products, and not just for the food industry or animal feed purposes as it is happening now. Agricultural residue of the roller milled wheat grain is a wheat bran description. The low-cost of wheat bran and its composition assortment provides a good source of substrate for various enzymes and organic acids production and other biotechnological applications. The main purpose of this review article is to look into recent trends, developments, and applications of wheat bran.


2014 ◽  
Vol 65 ◽  
pp. 2-12 ◽  
Author(s):  
Dietmar R. Kammerer ◽  
Judith Kammerer ◽  
Regine Valet ◽  
Reinhold Carle

Sign in / Sign up

Export Citation Format

Share Document