Hydromagnetic Instability of Rivlin-Ericksen Dusty Fluid In Porous Medium : Effect of Inertia

Author(s):  
Neetu Singh ◽  
Sudhir Kumar
2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Liaquat Ali Lund ◽  
Zurni Omar ◽  
Ilyas Khan

Purpose The purpose of this study is to find the multiple branches of the three-dimensional flow of Cu-Al2 O3/water rotating hybrid nanofluid perfusing a porous medium over the stretching/shrinking surface. The extended model of Darcy due to Forchheimer and Brinkman has been considered to make the hybrid nanofluid model over the pores by considering the porosity and permeability effects. Design/methodology/approach The Tiwari and Das model with the thermophysical properties of spherical particles for efficient dynamic viscosity of the nanoparticle is used. The linear similarity transformations are applied to convert the partial differential equations into ordinary differential equations (ODEs). The system of governing ODEs is solved by using the three-stage Lobatto IIIa scheme in MATLAB for evolving parameters. Findings The system of governing ODEs produces dual branches. A unique stable branch is identified with help of stability analysis. The reduced heat transfer rate has been shown to increase with the reduced ϕ2 in both branches. Further, results revealed that the presence of multiple branches depends on the ranges of porosity, suction and stretching/shrinking parameters for the particular value of the rotating parameter. Originality/value Dual branches of the three-dimensional flow of Cu-Al2 O3/water rotating hybrid nanofluid have been found. Therefore, stability analysis of the branches is also conducted to know which branch is appropriate for the practical applications. To the best of the authors’ knowledge, this research is novel and there is no previously published work relevant to the present study.


Author(s):  
Noorzehan Fazahiyah Md Shab ◽  
Anati Ali

This paper investigated the problem of hydromagnetic boundary layer flow and heat transfer of a dusty fluid over a stretching sheet through a porous medium. The velocity slip was considered instead of the no-slip condition at the boundary. The governing partial equations were reduced into a set of non-linear ordinary differential equations by using the suitable similarity transformation. The transformed equations were numerically integrated using bvp4c in Matlab. The effects of various physical parameters on the velocity and temperature profiles of both phases, such as fluid-particle interaction parameter, magnetic parameter, mass concentration parameter, porosity parameter and Prandtl number were obtained and analyzed through several plots. Useful discussions were carried out with the help of plotted graphs and tables. Under the limiting cases, the obtained numerical results were compared and found to be in good agreement with previously published results.


Sign in / Sign up

Export Citation Format

Share Document