Experimental analysis of Salt Gradient Solar Pond with and without using a transparent separator (Glass) above lower convective zone

2017 ◽  
Vol 4 (3) ◽  
pp. 5-10 ◽  
Author(s):  
Gautam saini ◽  
◽  
Ankur agrawal ◽  
Mitesh Varshney ◽  
Nirupam Rohatgi
2014 ◽  
Vol 926-930 ◽  
pp. 4373-4376
Author(s):  
Chun Juan Gao ◽  
Qi Zhang ◽  
Liang Wang ◽  
Yan An Zhang ◽  
Xi Ping Huang

In this paper, we established a simulated mini solar pond, and carried out a series of experiments to maintain the salt gradient solar pond. Meanwhile, the salinity variation of the lower convective zone (LCZ) of solar pond was investigated. Research results showed that by means of injecting saturated brine into the bottom of solar pond periodically, the salt gradients of solar pond could maintain relatively stable during a long time.


Author(s):  
N. Ç. Bezir ◽  
N. Özek ◽  
R. Kayalı ◽  
A. K. Yakut ◽  
A. Sencan ◽  
...  

2014 ◽  
Vol 472 ◽  
pp. 409-412
Author(s):  
Chun Juan Gao ◽  
Qi Zhang ◽  
Ze Liang Dong ◽  
Shu Yuan Guo ◽  
Xi Ping Huang

In this paper, it was presented that the establishment and experimental investigation of a salt-gradient solar pond. The solar pond was filled with salty water to form three zones (e.g., upper convective zone, non-convective zone and lower convective zone) accordingly with different methods of saline injection. Parameters like salinity and temperature were measured and recorded daily at various locations in the salt-gradient solar pond. The results showed that solar pond collected and stored solar energy for a long period of time can be possible by controlling the thickness and salinity of salt gradient layer of the solar pond.


2013 ◽  
Vol 448-453 ◽  
pp. 1521-1524
Author(s):  
Chun Juan Gao ◽  
Qi Zhang ◽  
Hai Hong Wu ◽  
Liang Wang ◽  
Xi Ping Huang

The solar ponds with a surface of 0.3m2were filled with different concentration salt water and fresh water. The three layer’s structure of solar ponds was formed in the laboratory ponds by using the salinity redistribution. The performance and diffusion of salinity were xperimentally in the solar pond. The measurements were taken and recorded daily at various locations in the salt-gradient solar pond during a period of 30 days of experimentation. The experimental results showed that the salinity gradient layer can sustain a longer time when the lower convective zone is thicker, which is benefit to store solar energy. Therefore, properly increasing the height of LCZ is a good method to enhance the solar pond performance.


1981 ◽  
Vol 103 (1) ◽  
pp. 11-16 ◽  
Author(s):  
L. J. Wittenberg ◽  
M. J. Harris

The largest salt-gradient solar pond in the U. S. occupies an area of 2020 m2 and was installed for only $35/m2. The pond has a storage layer of 1.6 m consisting of 18 percent sodium chloride, a l-m gradient zone and a 0.4-m top convective zone. After 1.5 yr of operation, the storage temperature reached a maximum of 64°C in July and a minimum of 28°C in February. During July-September 1979, 143.5 GJ (136 million Btu) of heat was utilized. Under steady-state conditions, the pond is conservatively predicted to deliver over 1015 GJ/yr (962 million Btu) of heat to be used principally for heating an outdoor swimming pool in the summer and an adjacent recreation building from October to December each year. Based upon a 15-yr depreciation of the installation costs, the cost of this heat, $8.95/GJ ($9.45/million Btu) is already below the cost of heating with fuel oil. Maintenance of water clarity, corrosion of metallic components, and the assurance of the containment of the pond water have been the principal operational concerns and will require further study.


2011 ◽  
Vol 347-353 ◽  
pp. 174-177 ◽  
Author(s):  
Dan Wu ◽  
Hong Sheng Liu ◽  
Wen Ce Sun

The performance of Salt-gradient solar ponds (SGSP) with and without the solar collector are investigated experimentally in this paper. Two mini solar ponds with same structure are built, and one the them is appended with an exceptive solar collector for compared study. The salinity, temperature and turbidity of solar pond are studied contrastively for the two solar ponds under the same ambient conditions. The ambient temperatures,humidity and solar radiation are investigated during the experimental period. It was found that the temperature of the lower convective zone in the solar pond coupled with a solar collector increases by about 20% due to the introduce of solar collector.


2021 ◽  
Vol 43 ◽  
pp. 59-71
Author(s):  
Devendra B. Sadaphale ◽  
S.P. Shekhawat ◽  
Vijay R. Diware

Salt gradient solar ponds are to be designed for thermal efficiency and salinity profile stability. As the salt flux moves upward in the pond, the gradient gets destabilized. This is counteracted by intrusion of salt at different levels as and when required. The density of salt is highest at the bottom and minimum at the top. Hence the destabilization effect is more at top that is at the interface of upper convective zone and non-convective zone (NCZ). In order to keep the interface stable, it is desirable to provide a higher slope of salt gradient near it. However, throughout the non-convective zone, it is not feasible to provide higher slope due to solubility limitations. Hence Husain et al (2012) to divide the NCZ into two parts. The top few centimeters may be given a higher slope and the rest of the zone may be given mild slope as usual. Husain et al (2012) have given analysis for the same and found it to be feasible. However, the experimental feasibility of the same needs to be verified. The present work has done an attempt for the same. In this study, an insulated solar pond with a surface area of 1.40 m2and a depth of 1.14 m is built at the SSBT’s College of Engineering and Technology, Jalgaon in the Maharashtra State (India). The three salty water zones (upper convective, non-convective and heat storage) were formed by filling the pond with salty water of various densities. 6 Thermocouples (type Pt100A) (C+0.2%) were used to measure the temperature profile within the pond. A maximum temperature of 47°C was recorded in the heat storage zone in time span considered for study. The results obtained from experimentation is verified with the concept suggested by Hussain et al (2012) it has been found that they are in a good agreement. The influence of varying the thicknesses of the zones present in a salinity gradient solar pond on the temperatures of the upper convective zone (UCZ) and the lower convective zone (LCZ) is investigated. Also, it is found that by adding the additional non convective zone of 50 mm thickness above the UCZ the heat collection capacity of the LCZ is increased noticeably. The study finds that thickness variation of the zones within the pond is a practical feasibility. The system worked for the entire experimental duration effectively without failure.


2008 ◽  
Vol 85 (11) ◽  
pp. 1102-1112 ◽  
Author(s):  
Nalan Ç. Bezir ◽  
Orhan Dönmez ◽  
Refik Kayali ◽  
Nuri Özek

Sign in / Sign up

Export Citation Format

Share Document