REINFORCEMENT METHOD OF COMPOSITE SEISMIC RESISTANT WALL BY STRUCTURAL PLYWOOD AND STEEL MEMBERS

Author(s):  
Seine Kono ◽  
Haruka Kataoka ◽  
Takumi Ito

This is a study of a composite structural wall of wood and steel, in which two steel columns are sandwiched between two plywoods with a thickness of 12 mm. Previous studies have shown that plywood undergoes out-of-plane deformation that interferes with the usability of the building. Therefore, a horizontal loading test was conducted with the position of the bolt that fastens the plywood as a parameter, and out-of-plane deformation and destructive properties were examined. Furthermore, in order to suppress out-of-plane deformation of plywood, we proposed a new reinforcement method using a steel member with a thickness of 3.2 mm. Also, its effect was verified experimentally. As a result of experiments with four types of bolt layouts, the specimen with bolt layout close to center presented small out-of-plane deformation, and each bolt layout effected the mechanical properties each other. The out-of-plane reinforcement was effective for bolt layouts that were long in the horizontal direction.

2005 ◽  
Author(s):  
Bruce S. Kang ◽  
Chuanyu Feng

Since Tabor showed the application of spherical indentation approach to obtain material post-yielding true stress-strain curves, the indentation technique has been investigated to determine mechanical properties besides hardness measurement. Accurate measurement of indentation parameters is critical in the determination of surface mechanical properties using indentation method. In this research, an in-situ optical Transparent Indenter Measurement (TIM) method was developed for material inspection and mechanical property measurement. Using spherical indentation, residual surface deformation after spherical indentations was first investigated on IN783 superalloy samples using phase-shifting Twyman-Green and moire´ interferometry. The elastic-plastic boundary was identified based on the characteristic of the out-of-plane deformation fringe patterns. Then using the measured in-plane deformation, yield strength of the tested material was obtained. Using the TIM system, real-time in-situ measurement of indentation-induced out-of-plane deformation and contact radius were directly measured during an indentation process. Coupled with elastic recovery theories and 2D finite element analyses, a procedure was developed to determine the material stress-strain curve. It is also demonstrated that the TIM method is suitable for debonding inspection of thin film materials.


Crystals ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 62
Author(s):  
Xu Xu ◽  
Zeping Zhang ◽  
Wenjuan Yao

Graphene and graphene oxide (GO) usually have grain boundaries (GBs) in the process of synthesis and preparation. Here, we “attach” GBs into GO, a new molecular configuration i.e., polycrystalline graphene oxide (PGO) is proposed. This paper aims to provide an insight into the stability and mechanical properties of PGO by using the molecular dynamics method. For this purpose, the “bottom-up” multi-structure-spatial design performance of PGO and the physical mechanism associated with the spatial structure in mixed dimensions (combination of sp2 and sp3) were studied. Also, the effect of defect coupling (GBs and functional groups) on the mechanical properties was revealed. Our results demonstrate that the existence of the GBs reduces the mechanical properties of PGO and show an “induction” role during the tensile fracture process. The presence of functional groups converts in-plane sp2 carbon atoms into out-of-plane sp3 hybrid carbons, causing uneven stress distribution. Moreover, the mechanical characteristics of PGO are very sensitive to the oxygen content of functional groups, which decrease with the increase of oxygen content. The weakening degree of epoxy groups is slightly greater than that of hydroxyl groups. Finally, we find that the mechanical properties of PGO will fall to the lowest values due to the defect coupling amplification mechanism when the functional groups are distributed at GBs.


2021 ◽  
pp. 004051752110134
Author(s):  
Cerise A Edwards ◽  
Stephen L Ogin ◽  
David A Jesson ◽  
Matthew Oldfield ◽  
Rebecca L Livesey ◽  
...  

Military personnel use protective armor systems that are frequently exposed to low-level damage, such as non-ballistic impact, wear-and-tear from everyday use, and damage during storage of equipment. The extent to which such low-level pre-damage could affect the performance of an armor system is unknown. In this work, low-level pre-damage has been introduced into a Kevlar/phenolic resin-starved composite panel using tensile loading. The tensile stress–strain behavior of this eight-layer material has been investigated and has been found to have two distinct regions; these have been understood in terms of the microstructure and damage within the composite panels investigated using micro-computed tomography and digital image correlation. Ballistic testing carried out on pristine (control) and pre-damaged panels did not indicate any difference in the V50 ballistic performance. However, an indication of a difference in response to ballistic impact was observed; the area of maximal local out-of-plane deformation for the pre-damaged panels was found to be twice that of the control panels, and the global out-of-plane deformation across the panel was also larger.


2021 ◽  
Vol 11 (11) ◽  
pp. 4981
Author(s):  
Andreas Tausendfreund ◽  
Dirk Stöbener ◽  
Andreas Fischer

In the concept of the process signature, the relationship between a material load and the modification remaining in the workpiece is used to better understand and optimize manufacturing processes. The basic prerequisite for this is to be able to measure the loads occurring during the machining process in the form of mechanical deformations. Speckle photography is suitable for this in-process measurement task and is already used in a variety of ways for in-plane deformation measurements. The shortcoming of this fast and robust measurement technique based on image correlation techniques is that out-of-plane deformations in the direction of the measurement system cannot be detected and increases the measurement error of in-plane deformations. In this paper, we investigate a method that infers local out-of-plane motions of the workpiece surface from the decorrelation of speckle patterns and is thus able to reconstruct three-dimensional deformation fields. The implementation of the evaluation method enables a fast reconstruction of 3D deformation fields, so that the in-process capability remains given. First measurements in a deep rolling process show that dynamic deformations underneath the die can be captured and demonstrate the suitability of the speckle method for manufacturing process analysis.


2021 ◽  
Vol 53 (1) ◽  
Author(s):  
Shuangle Wu ◽  
Fangyuan Sun ◽  
Haotian Xie ◽  
Qihan Zhao ◽  
Peizheng Yan ◽  
...  

Crystals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 427
Author(s):  
Pavlina Mateckova ◽  
Vlastimil Bilek ◽  
Oldrich Sucharda

High-performance concrete (HPC) is subjected to wide attention in current research. Many research tasks are focused on laboratory testing of concrete mechanical properties with specific raw materials, where a mixture is prepared in a relatively small amount in ideal conditions. The wider utilization of HPC is connected, among other things, with its utilization in the construction industry. The paper presents two variants of HPC which were developed by modification of ordinary concrete used by a precast company for pretensioned bridge beams. The presented variants were produced in industrial conditions using common raw materials. Testing and comparison of basic mechanical properties are complemented with specialized tests of the resistance to chloride penetration. Tentative expenses for normal strength concrete (NSC) and HPC are compared. The research program was accomplished with a loading test of model experimental pretensioned beams with a length of 7 m made of ordinarily used concrete and one variant of HPC. The aim of the loading test was to determine the load–deformation diagrams and verify the design code load capacity calculation method. Overall, the article summarizes the possible benefits of using HPC compared to conventional concrete.


2013 ◽  
Vol 405-408 ◽  
pp. 1616-1622
Author(s):  
Guo Hui Cao ◽  
Jia Xing Hu ◽  
Kai Zhang ◽  
Min He

In order to research on mechanical properties of flexible suspension bridges, a geometric nonlinear analysis method was used to simulate on the experimental results, and carried on static loading test finally. In the loading test process, the deformations were measured in critical section of the suspension bridge, and displacement values of measured are compared with simulation values of the finite element simulation. Meanwhile the deformations of the main cable sag are observed under classification loading, the results show that the main cable sag increment is basically linear relationship with the increment of mid-span loading and tension from 3L/8 and 5L/8 to L/2 section, the main cable that increasing unit sag required mid-span loads and tension are gradually reduce in near L/4 and 3L/4 sections and gradually increase in near L/8 and 7L/8 sections and almost equal in near L/2, 3L/8 and 5L/8 sections. From the experimental results, the flexible suspension bridge possess good mechanical properties.


Sign in / Sign up

Export Citation Format

Share Document