TIME REDUCTION DURING RESTORATION OF THE EXTERIOR OF A HISTORICAL BUILDING

Author(s):  
Renato Lagana

Emergency management due to partial collapse of facade elements is a great interest topic. The collapse often occurs in unexpected damage to building structures of architectural value within the historic urban centers. The actions often require a long time to implement. After an initial delimitation and isolation of the damaged surfaces are initiated, discovery and design of the restoration are started. The economic coverage, no less important, is often done over the years. We undertake a case study, developed in the intervention performed in front of the Cathedral of Reggio Calabria. The study covered aspects related to the organization of the first measures after the collapse of some decorative elements and the subsequent development of the site. The first phase involved the organization and implementation of protection measures to achieve tight deadlines to allow the use of space for an important and non-deferrable event. Authorization procedures for this first phase were expedited and operating procedure for the management of safety for temporary installations was established. The second phase, managed in a day, involved the intervention to ensure the practicability and ensure the safety of users. The preparation of the construction site optimized the execution time of the procedures. The design of the temporary works optimized the work of the teams involved in work sequencing, which resulted in reduced downtime and possible interference. The result of the design choices and operational programming optimized the execution time.

Author(s):  
Agung Yudha Berliantara

ETL scheduling is a challenging and exciting issue to solve. The ETL scheduling problem has many facets, one of which is the cost of time. If it is not handled correctly, it may take a very long time to execute and inconsistent data in very large data. In this study using Round-robin algorithm method that proved able to produce efficient results and in accordance with conventional methods. After doing the research, the difference between these two methods is about execution time. Through this experiment, the Round-robin scheduling method gives a more efficient execution time of up to 61% depending on the amount of data and the number of partitions used.


Author(s):  
V. Donato ◽  
C. Biagini ◽  
G. Bertini ◽  
F. Marsugli

Historical Building Information Modeling (H-BIM) has been widely documented in literature and is becoming more popular with government bodies, who are increasingly choosing to make its use mandatory in public procurements and contracts. Although the system seems to be one of the best approaches for managing data and driving the decision-making process, several difficulties arise due to the amount of effort required in the initial phases, when the data derived from a geometrical survey must be converted into parametric elements. Moreover, users must decide on a “level of geometrical simplification” a long time in advance, and this inevitably leads to a loss of geometrical data. <br><br> From this perspective, our research describes a procedure to optimize the workflow of information for existing artefacts, in order to achieve a “lean” H-BIM. In this article, we will analyse two aspects: the first relates to the level of accuracy in a digital model created from the two different point clouds achieved from laser scanner and form images, while the second concerns the conversion of this information into parametric elements (Building Object Models- BOMs) that need to have specific characteristics. <br><br> The case study we are presenting is the “Ponte Giorgini” (“Giorgini Bridge”) in Castiglione della Pescaia (Grosseto – Italy).


Author(s):  
Epaminondas Vasconcelos de Menezes ◽  
Rerison Laian Barbosa de França ◽  
Igor Bezerra de Lima ◽  
David Barbosa de Alencar ◽  
Francisco Carlos Tavares Amorim ◽  
...  

Slope stabilization techniques have been increasingly used in the field, mainly due to high market values for land in large urban centers. With this, the technical feasibility study guarantees the application of the best solution for each case. From this context, we sought to verify the best method of containment by means of a case study according to the parameters of soil resistance, cohesion and angle of friction at the residence Morada dos Pássaros in Manaus - AM. The methodology used was of an exploratory nature with a case study, where in the first phase the topographic survey of the study area was carried out. In the second phase, it was sought to plan the location of the holes, according to ABNT NBR 8036 (1983). for the accomplishment and technical follow-up of the investigation of the soil in the place by means of the test of percussion to the percussion - SPT and in the 3º phase was characterized by means of physical and mechanical laboratory test with the collection of material. Considering the collected data, it is noticed that the soil is with 3% of plasticity, concluding that a soil with plasticity below 7% loses the capacity to be molded and to become brittle. Therefore, it is concluded that the best technique to be used is geosynthetics, both in cost and in soil absorption, due to the feasibility of redistribution of stresses and slope deformations.


2019 ◽  
Vol 75 (2) ◽  
pp. I_99-I_107
Author(s):  
Shoken SHIMIZU ◽  
Junichiro YONETAKE ◽  
Takahiko SHOBU ◽  
Makoto IMAI ◽  
Shinichi YAMAMOTO ◽  
...  

Water ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 1884
Author(s):  
Ana Juárez ◽  
Knut Alfredsen ◽  
Morten Stickler ◽  
Ana Adeva-Bustos ◽  
Rodrigo Suárez ◽  
...  

Floods are among the most damaging of natural disasters, and flood events are expected to increase in magnitude and frequency with the effects of climate change and changes in land use. As a consequence, much focus has been placed on the engineering of structural flood mitigation measures in rivers. Traditional flood protection measures, such as levees and dredging of the river channel, threaten floodplains and river ecosystems, but during the last decade, sustainable reconciliation of freshwater ecosystems has increased. However, we still find many areas where these traditional measures are proposed, and it is challenging to find tools for evaluation of different measures and quantification of the possible impacts. In this paper, we focus on the river Lærdal in Norway to (i) present the dilemma between traditional flood measures and maintaining river ecosystems and (ii) quantify the efficiency and impact of different solutions based on 2D hydraulic models, remote sensing data, economics, and landscape metrics. Our results show that flood measures may be in serious conflict with environmental protection and legislation to preserve biodiversity and key nature types.


2021 ◽  
Vol 11 (15) ◽  
pp. 7169
Author(s):  
Mohamed Allouche ◽  
Tarek Frikha ◽  
Mihai Mitrea ◽  
Gérard Memmi ◽  
Faten Chaabane

To bridge the current gap between the Blockchain expectancies and their intensive computation constraints, the present paper advances a lightweight processing solution, based on a load-balancing architecture, compatible with the lightweight/embedding processing paradigms. In this way, the execution of complex operations is securely delegated to an off-chain general-purpose computing machine while the intimate Blockchain operations are kept on-chain. The illustrations correspond to an on-chain Tezos configuration and to a multiprocessor ARM embedded platform (integrated into a Raspberry Pi). The performances are assessed in terms of security, execution time, and CPU consumption when achieving a visual document fingerprint task. It is thus demonstrated that the advanced solution makes it possible for a computing intensive application to be deployed under severely constrained computation and memory resources, as set by a Raspberry Pi 3. The experimental results show that up to nine Tezos nodes can be deployed on a single Raspberry Pi 3 and that the limitation is not derived from the memory but from the computation resources. The execution time with a limited number of fingerprints is 40% higher than using a classical PC solution (value computed with 95% relative error lower than 5%).


2021 ◽  
Vol 9 (4) ◽  
pp. 422
Author(s):  
Alessio Innocenti ◽  
Miguel Onorato ◽  
Carlo Brandini

Extreme sea waves, although rare, can be notably dangerous when associated with energetic sea states and can generate risks for the navigation. In the last few years, they have been the object of extensive research from the scientific community that helped with understanding the main physical aspects; however, the estimate of extreme waves probability in operational forecasts is still debated. In this study, we analyzed a number of sea-states that occurred in a precise area of the Mediterranean sea, near the location of a reported accident, with the objective of relating the probability of extreme events with different sea state conditions. For this purpose, we performed phase-resolving simulations of wave spectra obtained from a WaveWatch III hindcast, using a Higher Order Spectral Method. We produced statistics of the sea-surface elevation field, calculating crest distributions and the probability of extreme events from the analysis of a long time-series of the surface elevation. We found a good matching between the distributions of the numerically simulated field and theory, namely Tayfun second- and third- order ones, in contrast with a significant underestimate given by the Rayleigh distribution. We then related spectral quantities like angular spreading and wave steepness to the probability of occurrence of extreme events finding an enhanced probability for high mean steepness seas and narrow spectra, in accordance with literature results, finding also that the case study of the reported accident was not amongst the most dangerous. Finally, we related the skewness and kurtosis of the surface elevation to the wave steepness to explain the discrepancy between theoretical and numerical distributions.


2018 ◽  
Vol 229 ◽  
pp. 02021
Author(s):  
James Mwangi ◽  
Laura Putri ◽  
Listhbeth Collins

With over 50 million students, Indonesia has the fourth largest education system in the world. The first twelve years of education are compulsory for all citizens. The students, together with over 3 million teachers spend six (or five in some cases) days a week at over 300,000 schools, typically from 6:30 AM to 2 (or 3) PM. Geographically, Indonesia is traversed by the infamous “ring of fire” and prone to natural events resulting from the tectonic plate movements of the Australian Plate from the South, the Eurasian and Sunda Plates from the North and the Philippine Plate from the East. Left unmitigated, these natural events would lead to natural disasters emanating from resulting earthquakes and leading to tsunamis, landslides, the collapse of building structures and failure of lifelines (roads, pipelines, electrical grid, etc.). In an effort to provide disaster-safe schools, the National Agency for Disaster Management has required that school facilities be a community center in case of disasters and serve as emergency shelters. Retrofit of existing buildings will be needed to comply with government guidelines. This paper presents a case study of the determination of structural deficiencies of an existing school building in SDN 42 Korong Gadang, Padang, West Sumatra and implementation of a seismic retrofit (design and construction) at the same building to mitigate potential earthquake disaster.


2021 ◽  
Vol 3 (3) ◽  
Author(s):  
Ravi Mudragada ◽  
S. S. Mishra

AbstractMany researchers have carried out experimental and numerical investigations to examine building structures’ response to explosive loads. Studies of bridges subjected to blast loads are limited. Hence, in this study, we present a case study on a cable-stayed bridge, namely, Charles River Cable-Stayed Bridge-Boston, to assess its robustness and resistance against the progressive collapse resulting from localized failure due to blast loads. Three different blast scenarios are considered to interpret the bridge performance to blast loads. To monitor the progressive failure mechanisms of the structural elements due to blast, pre-defined plastic hinges are assigned to the bridge deck. The results conclude that the bridge is too weak to sustain the blast loads near the tower location, and the progressive collapse is inevitable. Hence, to preserve this cable-stayed bridge from local and global failure, structural components should be more reinforced near the tower location. This case study helps the designer better understand the need for blast resistance design of cable-stayed bridges.


2021 ◽  
Vol 10 (4) ◽  
pp. 230
Author(s):  
Onel Pérez-Fernández ◽  
Juan Carlos García-Palomares

Moped-style scooters are one of the most popular systems of micro-mobility. They are undoubtedly good for the city, as they promote forms of environmentally-friendly mobility, in which flexibility helps prevent traffic build-up in the urban centers where they operate. However, their increasing numbers are also generating conflicts as a result of the bad behavior of users, their unwarranted use in public spaces, and above all their parking. This paper proposes a methodology for finding parking spaces for shared motorcycle services using Geographic information system (GIS) location-allocation models and Global Positioning System (GPS) data. We used the center of Madrid and data from the company Muving (one of the city’s main operators) for our case study. As well as finding the location of parking spaces for motorbikes, our analysis examines how the varying distribution of demand over the course of the day affects the demand allocated to parking spaces. The results demonstrate how reserving a relatively small number of parking spaces for scooters makes it possible to capture over 70% of journeys in the catchment area. The daily variations in the distribution of demand slightly reduce the efficiency of the network of parking spaces in the morning and increase it at night, when demand is strongly focused on the most central areas.


Sign in / Sign up

Export Citation Format

Share Document