DESIGN OF MOLTEN SALT SHELLS FOR USE IN ENERGY STORAGE AT SOLAR POWER PLANTS

Author(s):  
Samaan G. Ladkany ◽  
William G. Culbreth ◽  
Nathan Loyd

Design of a steel tank for the storage of excess energy from thermal solar power plants using molten salts (MS) at 580°C is presented. Energy can be stored up to a week in large containers to generate eight hours of electricity for use at night or to reduce weather related fluctuation at solar thermal energy plants. Our research supported by Office of Naval Research (ONR) presents a detailed design of a cylindrical shell for the storage of high temperature molten salts. The storage shell consists of an inner stainless steel layer designed to resist corrosion and an external steel structural layer to contain the large pressures resulting from the molten salt. The cylindrical tank is 54 feet (16.459 meters) high and has an 80 feet (48.768 meters) diameter, with the salt level at a height of 42 feet (12.802 meters). Given the heat of the molten salt and the size of the tank, the design includes a flat shell cover supported on stainless steel columns and a semispherical utility access dome at the center. Considerations are made for the reduction of strength of steel at elevated temperatures. Layers of external insulation materials are used to reduce heat loss in the storage shell. The design presents a posttensioned concrete foundation analysis for the storage tank, which sits on a layer of sand to allow for thermal expansion.

2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Andrzej Bielecki ◽  
Sebastian Ernst ◽  
Wioletta Skrodzka ◽  
Igor Wojnicki

Concentrated solar power plants belong to the category of clean sources of renewable energy. The paper discusses the possibilities for the use of molten salts as storage in modern CSP plants. Besides increasing efficiency, it may also shift their area of application: thanks to increased controllability, they may now be used not only to cover baseload but also as more agile, dispatchable generators. Both technological and economic aspects are presented, with focus on the European energy sector and EU legislation. General characteristics for CSP plants, especially with molten salt storage, are discussed. Perspectives for their development, first of all in economic aspects, are considered.


Impact ◽  
2017 ◽  
Vol 2017 (3) ◽  
pp. 58-60 ◽  
Author(s):  
Vipluv Aga ◽  
Carlos F Peruchena

2018 ◽  
Vol 5 ◽  
pp. 56-65
Author(s):  
Alexander Foldi ◽  
Duy Khang Simba Nguyen ◽  
Yeong Cherng Yap

The desire to increase the efficiency of existing renewable energy sources has been thoroughly researched over the past years. This meta study aimed to investigate existing methods used by previous researchers to increase the Specific Heat Capacity of Molten Salt used for Concentrated Solar Power Plants. Investigations into nanoparticles were explored because of the effect of particle size and concentration can potentially increase the specific heat capacity of the molten salt. Numerous nanoparticles have shown to improve the thermal properties such as Silica (SiO2), Alumina (Al2O3), Titania (TiO2). Our summation was that the addition of nanoparticles into Molten Salts shows an increase in desired thermal properties of the Molten Salts. An efficiency increase of up to 28% was noted in the SHC (Cp) of the Molten Salts when Nanoparticles of 60nm were introduced.


Author(s):  
Samaan G. Ladkany ◽  
William G. Culbreth ◽  
Nathan Loyd

Molten salts (MS) in the 580°C range could be used to store excess energy from solar power stations and possibly from nuclear or coal. The energy can be stored up to a week in large containers at elevated temperature to generate eight hours of electricity to be used at night or during peak demand hours. This helps to reduce the fluctuation experienced at thermal solar power stations due to weather conditions. Our research supported by Office of Naval Research (ONR), presents a survey of salts to be used in molten salt technology. The physical characteristics of these salts such as density, melting temperature, viscosity, electric conductivity, surface tension, thermal capacity and cost are discussed. Cost is extremely important given the large volumes of salt required for energy storage at a commercial power station. Formulas are presented showing the amount of salt needed per required megawatts of stored energy depending on the type of salt. The estimated cost and the size of tanks required and the operating temperatures are presented. Recommendations are made regarding the most efficient type of molten salt to use. Commercial thermal solar power stations have been constructed in the US and overseas mainly in Spain for which molten salt is being considered. A field of flat mirrors together with collection towers are used in some designs and parabolic troughs used in others.


1994 ◽  
Vol 116 (3) ◽  
pp. 137-141 ◽  
Author(s):  
D. C. Smith ◽  
E. E. Rush ◽  
C. W. Matthews ◽  
J. M. Chavez ◽  
P. A. Bator

The molten salt pump and valve (P&V) test loops at Sandia National Laboratories (SNL) National Solar Thermal Test Facility (NSTTF) operated between Jan. 1988 and Oct. 1990. The purpose of the P&V test was to demonstrate the performance, reliability, and service life of full-scale hot and cold salt pumps and valves for use in commercial central receiver solar power plants. The P&V test hardware consists of two pumped loops; the “Hot Loop” to simulate the hot (565°C) side of the receiver and the “Cold Loop” to simulate the receiver’s cold (285°C) side. Each loop contains a pump and five valves sized to be representative of a conceptual 60-MWe commercial solar power plant design. The hot loop accumulated over 6700 hours of operation and the cold loop over 2500 hours of operation. This project has demonstrated that standard commercial scale pump and valve designs will work in molten salt. The test also exposed some pitfalls that must be avoided in specifying such equipment. Although certainly not all of the pitfalls were discovered, careful design and specification should result in reliable or at least workable equipment.


Energies ◽  
2014 ◽  
Vol 7 (10) ◽  
pp. 6721-6740 ◽  
Author(s):  
Rogelio Menéndez ◽  
Juan Martínez ◽  
Miguel Prieto ◽  
Lourdes Barcia ◽  
Juan Sánchez

2008 ◽  
Vol 130 (2) ◽  
Author(s):  
Jesús M. Lata ◽  
Manuel Rodríguez ◽  
Mónica Álvarez de Lara

Molten salt technology represents nowadays the most cost-effective technology for electricity generation for stand-alone solar power plants. Although this technology can be applied to both concentrating technologies, parabolic through and central receiver systems (CRSs), CRS technology can take advantages from its higher concentration, allowing to work at higher temperatures and therefore with a reduction in the size and cost of the storage system. The receiver system is the “door” for which the energy passes from the field collector to the thermal-electric cycle; it represents, therefore, the core of the CRS and its performance directly affects plant production. Starting from the published lessons from SOLAR TWO receiver technology, the validation of an improved receiver for molten salt technology was assumed as part of the SOLAR TRES solar thermal power commercial plant development. Main challenges for the new receiver were to increase its allowable peak flux up to 1MW∕m2 in order to maximize the thermal efficiency of the CRS solar power plant, and to improve its safe life without limiting the incident fluxes that the field of heliostats is able to deliver with an optimized pointing strategy. Several advanced features in geometric and thermodynamic aspects and in its material selection have been implemented on the receiver. With the results of a sensitivity analysis carried out with an own code developed by SENER (SENREC), a prototype receiver panel was designed, fabricated, and installed in a proper test bed at the PSA. Test validation on this panel was carried out in 2007. The initial test results show a very good behavior of the prototype receiver, which allows to anticipate that the objectives of its design can be fulfilled. SENER and CIEMAT have joined forces to face up the challenge of sizing and designing a new molten salt receiver of high thermal efficiency, able to operate at high fluxes without compromising its durability (at least 25years). Main challenges for the new receiver design were to optimize the receiver dimensions and receiver tube sizes and material selection to surpass the operating conditions in the new plants with respect to SOLAR TWO.


Sign in / Sign up

Export Citation Format

Share Document