COMPARATIVE STUDY ON THE BENDING PROPERTIES FOR TWO TYPES OF COMPOSITE BEAMS

Author(s):  
Xian Liang ◽  
Shujin Duan ◽  
Runming Niu ◽  
Fang Li

The difference between the steel and concrete composite-laminated action beam and the double steel and concrete composite action beam is in the connection of the top concrete slab and the steel top flange. The bending properties about the composite-laminated beam and the double composite beam in the negative flexural region are investigated in this paper. The relation of the cross section bending moment-curvature for the two types of composite beams under the action of negative bending moment are drawn by the whole process analysis method, and then the corresponding cracking moment, elastic ultimate bending moment and plastic ultimate bending moment are obtained. The analysis results have a good agreement with test data. Although the sectional bending stiffness and bending-carrying capacity of the composite-laminated beam and the double composite beam are comparable in the elastic state, the crack resistance of the composite-laminated beam is much better than that of the double composite beam.

2012 ◽  
Vol 166-169 ◽  
pp. 414-419
Author(s):  
Li Hua Chen ◽  
Fei Xiao ◽  
Qi Liang Jin

Based on the theoretical analysis and testing results, some key issues in design of outer-plated steel-concrete continuous composite beams are discussed. The influence of the form of steel beam upper flange on the behavior of composite beam is analyzed. The requirements about longitudinal reinforcement strength in the concrete flange of the negative moment region are given. It is suggested that the moment-shear interaction should be neglected when calculating the flexural capacity of outer-plated steel-concrete composite beams under negative bending moment. The behavior of longitudinal shear resistance at the interface between the concrete flange and web of composite beam is studied, and the related calculating formula is put forward based on the structural features of the composite beam.


2020 ◽  
Vol 2020 ◽  
pp. 1-17
Author(s):  
Pu Gao ◽  
Kuan Li ◽  
Yuanxun Zheng

The experimental work presents results on the fatigue performance of composite beams in the negative moment region and the changes of stiffness and deformation of composite beams under repeated loads; fatigue tests were carried out on two double-layer composite beams. The fatigue performance of composite beams with different reinforcement ratios under complete shear connection and the variation of deflection, strain of the reinforcement, strain of steel beam, and crack growth under fatigue load were obtained. The results showed that the fatigue resistance performance of concrete slab with low reinforcement ratio was much lower than that of concrete slab with high reinforcement ratio whereas, under the fatigue load, the stress of the welding nail in the negative moment region was small and the slip was almost negligible. The degradation of stiffness and the development of cracks were mainly due to the degradation of bond-slip between the concrete and reinforcement. The fatigue failure mode was the fracture of the upper reinforcement in negative moment region. The results obtained in this study are helpful in the design of composite beam.


1976 ◽  
Vol 3 (4) ◽  
pp. 514-522 ◽  
Author(s):  
M. N. El-Ghazzi ◽  
H. Robinson ◽  
I. A. S. Elkholy

The longitudinal shear failure of the slab of composite beams is constrained to occur at a predetermined shear surface. A method for calculating the longitudinal shear capacity of the slab of simply-supported steel–concrete composite beams is presented. The method is based on analyzing the stresses at failure of the concrete elements located at the slab shear surface.A design chart based on estimating the transverse normal stress required within the concrete slab to achieve the full ultimate flexural capacity of the composite beam is proposed. Alternatively, using elastic–plastic stress distribution across the concrete slab, the longitudinal compressive force due to bending and hence the applied moment can be predicted for any longitudinal shear capacity of the slab. The proposed design and analysis when compared to previous tests and analysis showed good agreement.The slab width and the shear span of the composite beam are found to be two important parameters which cannot be neglected when estimating the longitudinal shear capacity of the slab. These two parameters have been neglected in the empirical solutions previously adopted.


2012 ◽  
Vol 166-169 ◽  
pp. 1023-1028 ◽  
Author(s):  
Li Hua Chen ◽  
Qi Liang Jin ◽  
Haiyu Si

Static load tests were conducted on two reversed-loading simply supported and two continuous outer-plated steel-concrete composite beams to study the formation and development of cracks in such beams under negative bending moment. The test results show that based on the plane section assumption, it is an effective and economical method to calculate the cracking moment of the composite beams assuming a rectangular stress block for concrete in tension zone. Considering the structural features of outer-plated steel-concrete composite beams, the formula for calculating crack width of concrete flange of outer-plated steel-concrete composite beams is discussed and presented, and the calculated values of crack width agree well with the experimental results.


2016 ◽  
Vol 7 (2) ◽  
pp. 142-157 ◽  
Author(s):  
Kristi L. Selden ◽  
Amit H. Varma

Purpose The purpose of this study was to develop a three-dimensional (3D) finite element modeling (FEM) technique using the commercially available program ABAQUS to predict the thermal and structural behavior of composite beams under fire loading. Design/methodology/approach The model was benchmarked using experimental test data, and it accounts for temperature-dependent material properties, force-slip-temperature relationship for the shear studs and concrete cracking. Findings It was determined that composite beams can be modeled with this sequentially coupled thermal-structural 3D FEM to predict the displacement versus bottom flange temperature response and associated composite beam failure modes, including compression failure in the concrete slab, runaway deflection because of yielding of the steel beam or fracture of the shear studs. Originality/value The Eurocode stress-strain-temperature (σ-ε-T) material model for structural steel and concrete conservatively predict the composite beam deflections at temperatures above 500°C. Models that use the National Institute of Standards and Technology (NIST) stress-strain-temperature (σ-ε-T) material model more closely match the measured deflection response, as compared to the results using the Eurocode model. However, in some cases, the NIST model underestimates the composite beam deflections at temperatures above 500°C.


2011 ◽  
Vol 243-249 ◽  
pp. 1117-1121
Author(s):  
Xu Hong Zhang ◽  
He Wu ◽  
Jian Ping Cao

A numerical study on slip effect of simply supported composite beams under negative bending moment is conducted by means of finite element program of ANSYS based on the feasibility verification of ANSYS. The research contents include: slip distribution rules; slip effect on deflection in service stage and ultimate bearing capacity; relationship between slip effect and shear connection、lognitudinal percentage of reinforcement and working behavior of composite beams with partial shear connection under negative bending moment .


2019 ◽  
Vol 16 (06) ◽  
pp. 1840028
Author(s):  
Mahendra Kumar Pal ◽  
Takuzo Yamashita ◽  
Tomoshi Miyamura ◽  
Makoto Ohsaki

We present a high fidelity numerical simulation technique to analyze the nonlinear behavior of a composite beam under cyclic loading. The analysis is performed by using the in-house software called E-Simulator. A constitutive model for concrete; extended Drucker–Prager model considering the compressive failure and the tensile crack has been employed and the parameters are identified so that compressive and tensile behavior of concrete can be reproduced. The relation between the bending moment and deflection angle of a composite beam has been analyzed and compared with experimental results. Damage propagation and stiffness degradation results of concrete slab are demonstrated.


2014 ◽  
Vol 711 ◽  
pp. 495-498
Author(s):  
Shi Xiang Hu ◽  
Wen Gang Ma ◽  
Min Luo

The determination of post-tensioning cable forces is one of the most important issues for the design of arch pylon cable stayed bridge. In this paper, the optimization module implemented in MATLB, together with the commercial finite element software MIDAS, were employed to evaluate the minimum bending strain energy of the bridge. After optimizing the cable forces, the bending moment of the pylons were bigger than the values of original design. The bending moment of the main arch pylon within 55m to 70m height increased by 7280 kN•m, and the bending moment of the auxiliary arch pylon within 30m to 60m height increased by 3926 kN•m .The stress of the pylons was still far below the allowance value when the obtained cable forces were applied. However, for the girder, the difference between the maximum positive and maximum negative bending moments due to dead load can be lessened greatly by the application of the obtained cable forces. The results obtained revealed that the method presented could make full use of cable forces and lead to optimal structural performance.


Sign in / Sign up

Export Citation Format

Share Document