Numerical Simulation of Three Dimensional Fluid Flow Phenomena in Cylindrical Submerged Flat Membrane Bioreactor for Aeration Rate

2014 ◽  
Vol 25 (4) ◽  
pp. 401-408 ◽  
Author(s):  
Dae Chun Kim ◽  
Kun Yong Chung
2013 ◽  
Vol 694-697 ◽  
pp. 56-60
Author(s):  
Yue Jun Ma ◽  
Ji Tao Zhao ◽  
Yu Min Yang

In the paper, on the basis of three-dimensional Reynolds-averaged Navier-Stokes equations and the RNG κ-ε turbulence model, adopting Three-dimensional unstructured grid and pressure connection the implicit correction SIMPLEC algorithm, and using MRF model which is supported by Fluent, this paper carries out numerical simulation of the internal flow of the centrifugal pump in different operation points. According to the results of numerical simulation, this paper analyzes the bad flow phenomena of the centrifugal pump, and puts forward suggests about configuration perfected of the centrifugal pump. In addition, this paper is also predicted the experimental value of the centrifugal pump performance, which is corresponding well with the measured value.


1986 ◽  
Vol 108 (1) ◽  
pp. 51-58 ◽  
Author(s):  
M. Pouagare ◽  
R. A. Delaney

A multisweep space-marching solver based on a modified version of the SIMPLE algorithm was employed to study the three-dimensional flow field through a linear cascade. Three cases were tested: one with moderate loading, one with high loading, and one with high loading and tip clearance. The results of the numerical simulation were compared with available experimental measurements, and the agreement between the two was found satisfactory. The numerical simulation provided insight into several important endwall flow phenomena such as the interaction between the leakage and passage vortices, the interaction between the leakage vortex and the wake, the effect of leakage flow and loading on losses and secondary kinetic energy, the suction side corner separation, and the blowing of this separation by the leakage flow.


2019 ◽  
Vol 1 (1) ◽  
pp. 394-399 ◽  
Author(s):  
Mariusz Domagała ◽  
Hassan Momeni ◽  
Joanna Fabis-Domagała ◽  
Mariusz Krawczyk ◽  
Grzegorz Filo ◽  
...  

Abstract Hydraulic valves are widely used in many branches and they are still developed and improved. Due to the problem with verification of flow phenomena which appears during valves operation numerical simulations methods are tools which allows to improved valves design. This paper presents numerical simulation of fluid flow inside flow control valve.


Author(s):  
Siyue Xiong ◽  
Xueye Chen

Abstract In this paper, We arrange the obstacles based on the Koch fractal principle (OKF) in the micromixer. By changing the fluid flow and folding the fluid, a better mixing performance is achieved. We improve the mixing efficiency by placing OKF and changing the position of OKF, then we studied the influence of the number of OKF and the height of the micromixer on the mixing performance. The results show that when eight OKF are staggered in the microchannel and the height is 0.2 mm, the mixing efficiency of the OKF micromixer can reach 97.1%. Finally, we compared the velocity cross section and velocity streamline of the fluid, and analyzed the influence of OKF on the concentration trend. Through analysis, it is concluded that OKF can generate chaotic convection in the fluid, and enhance the mixing of fluids by generating vortices and folding the fluid. It can effectively improve the mixing efficiency of the micromixer.


2001 ◽  
Vol 41 (10) ◽  
pp. 1165-1172 ◽  
Author(s):  
Jeong Whan Han ◽  
Seung Hwan Heo ◽  
Dong Heun Kam ◽  
Byung Don You ◽  
Jong Jin Pak ◽  
...  

2021 ◽  
Vol 9 ◽  
Author(s):  
Houjun Gong ◽  
Mengqi Wu

Marine reactors are subjected to additional motions due to ocean conditions. These additional motions will cause large fluctuation of flow rate and change the coolant flow field, making the system unstable. Therefore, in order to understand the effect of oscillating motion on the flow characteristics, a numerical simulation of fluid flow is carried out based on a full-scale three-dimensional oscillating marine reactor. In this study, the resistance coefficients of the lattice, rod buddle and steam generator are fitted, and the distribution of flow rate, velocity as well as pressure in different regions is investigated through the standard model. After additional oscillation is introduced, the flow field in an oscillating reactor is presented and the effect of oscillating angle and elevation on the flow rate is investigated. Results show that the oscillating motion can greatly change the flow field in the reactor; most of the coolant circulates in the downcommer and lower head with only a small amount of coolant entering the core; the flow fluctuation period is consistent with the oscillating period, and the flow variation patterns under different oscillating conditions are basically the same; since the flow amplitude is related to oscillating speed, the amplitude of flow rate rises when decreasing the maximum oscillating angle; the oscillating elevation has little effect on the flow rate.


Sign in / Sign up

Export Citation Format

Share Document