scholarly journals DEVELOPMENT OF A BENCH FOR SEMI-FULL-SCALE MODELING OF A CONTROL SYSTEMFOR THE MOVEMENT OF A TRACKED VEHICLE WITH A HYDROSTATIC TRANSMISSION

Author(s):  
S.V. Kondakov ◽  
◽  
O.O. Pavlovskaya ◽  
A.R. Ishbulatov ◽  
◽  
...  

The article presents the results of the development of a bench for a semi-full-scale simulation of the motion control system of a tracked vehicle with a hydrostatic trans-mission, intended both for teaching programming of logical controllers and for testing control algorithms at the stage of their development. The analysis of technical solutions known on the market with the identification of their main shortcomings is performed. In the framework of the concept of semi-full-scale modeling, a structure has been drawn up and implemented. A mathematical model of the control system for the movement of a tracked vehicle with hydrostatic transmission is presented. It is made on the basis of an industrial tracked tractor of traction class 15 tons manufactured by JSC Ural Road Construction Equipment Plant and adapted to the needs of the stand. A set of control algorithms has been formed, which includes an algorithm for controlling the movement of a caterpillar vehicle, an algorithm for activating the running-side brake when there is a risk of skidding, and an algorithm for activating the brake of the lagging side when the hydrostatic mechanism is overloaded by pressure. To organize the input of initial data, as well as observations of the simulation results, the Altair Embed software package developed a visualization system that includes an operator panel mimic diagram demonstrating changes in the basic parameters of the tracked vehicle's motion (center of gravity speed; center of gravity trajectory; pump flow control pa-rameters; curvature of the trajectory (set and current); track rotation speed on the left and right sides; soil resistance coefficient under each track), a panel settings the algorithms for motion control of a tracked vehicle, a panel of adjustment of parameters of the soil and the selection panel motion path of the tracked vehicle.

2021 ◽  
pp. 15-19
Author(s):  

The results of a study of the control processes of an automated transmission and internal combustion engine of a transport unmanned tracked vehicle when the speed of movement is set by an external control device are presented. Keywords: unmanned tracked vehicle, algorithm, motion control, onboard gear unit, programmable logic controller, cruise control. [email protected]


2015 ◽  
Author(s):  
Øyvind F. Auestad ◽  
J. William McFann ◽  
Jan T. Gravdahl

The pressurized air cushion on a Surface Effect Ship (SES) can lift up to 80% of total vessel mass. The SES Motion Control System (SES-MCS) controls the vent valves which again controls the air cushion pressure, assuming lift fan air flow is pressurizing the air cushion. By controlling the air cushion pressure one can significantly counteract vertical sea wave disturbances, ensure high passenger comfort and reduce sea-sickness. The case studied in this work is the Umoe Mandal Wave Craft prototype, ’Umoe Ventus’, which is a high-speed offshore wind-farm service vessel specially designed for control in the vertical plane. The SES-MCS can adjust the draft from 1m to 3.2m in less time than the wave period. The SES-MCS can reduce motions significantly in order to perform Operation and Maintenance (O&M) in high seas. The craft is the fastest wind-farm service vessel of its size with high comfort in all relevant sea states. The performance of the SES-MCS is demonstrated through full-scale sea trials.


2014 ◽  
Vol 47 (3) ◽  
pp. 5157-5162 ◽  
Author(s):  
Daniel de A. Fernandes ◽  
Asgeir J. Sørensen ◽  
Décio C. Donha

2012 ◽  
Vol 7 (4) ◽  
Author(s):  
A. Lazić ◽  
V. Larsson ◽  
Å. Nordenborg

The objective of this work is to decrease energy consumption of the aeration system at a mid-size conventional wastewater treatment plant in the south of Sweden where aeration consumes 44% of the total energy consumption of the plant. By designing an energy optimised aeration system (with aeration grids, blowers, controlling valves) and then operating it with a new aeration control system (dissolved oxygen cascade control and most open valve logic) one can save energy. The concept has been tested in full scale by comparing two treatment lines: a reference line (consisting of old fine bubble tube diffusers, old lobe blowers, simple DO control) with a test line (consisting of new Sanitaire Silver Series Low Pressure fine bubble diffusers, a new screw blower and the Flygt aeration control system). Energy savings with the new aeration system measured as Aeration Efficiency was 65%. Furthermore, 13% of the total energy consumption of the whole plant, or 21 000 €/year, could be saved when the tested line was operated with the new aeration system.


2010 ◽  
Vol 7 ◽  
pp. 109-117
Author(s):  
O.V. Darintsev ◽  
A.B. Migranov ◽  
B.S. Yudintsev

The article deals with the development of a high-speed sensor system for a mobile robot, used in conjunction with an intelligent method of planning trajectories in conditions of high dynamism of the working space.


Sensors ◽  
2021 ◽  
Vol 21 (3) ◽  
pp. 747
Author(s):  
Mai The Vu ◽  
Tat-Hien Le ◽  
Ha Le Nhu Ngoc Thanh ◽  
Tuan-Tu Huynh ◽  
Mien Van ◽  
...  

Underwater vehicles (UVs) are subjected to various environmental disturbances due to ocean currents, propulsion systems, and un-modeled disturbances. In practice, it is very challenging to design a control system to maintain UVs stayed at the desired static position permanently under these conditions. Therefore, in this study, a nonlinear dynamics and robust positioning control of the over-actuated autonomous underwater vehicle (AUV) under the effects of ocean current and model uncertainties are presented. First, a motion equation of the over-actuated AUV under the effects of ocean current disturbances is established, and a trajectory generation of the over-actuated AUV heading angle is constructed based on the line of sight (LOS) algorithm. Second, a dynamic positioning (DP) control system based on motion control and an allocation control is proposed. For this, motion control of the over-actuated AUV based on the dynamic sliding mode control (DSMC) theory is adopted to improve the system robustness under the effects of the ocean current and model uncertainties. In addition, the stability of the system is proved based on Lyapunov criteria. Then, using the generalized forces generated from the motion control module, two different methods for optimal allocation control module: the least square (LS) method and quadratic programming (QP) method are developed to distribute a proper thrust to each thruster of the over-actuated AUV. Simulation studies are conducted to examine the effectiveness and robustness of the proposed DP controller. The results show that the proposed DP controller using the QP algorithm provides higher stability with smaller steady-state error and stronger robustness.


Author(s):  
Lei Cao ◽  
Guo-Ping Liu ◽  
Wenshan Hu ◽  
Jahan Zaib Bhatti

The Android-based networked control system laboratory (NCSLab) is a remote control laboratory that adopts an extensible architecture, mainly including Android mobile devices, MATLAB servers, controllers and test rigs. In order to conduct various simulations and experiments more effectively in NCSLab, the first key issue that needs to be solved is to enable users to design their own control algorithms or functional blocks on the Android client, rather than just using the basic block libraries provided by the system. So, this paper proposes and implements a scheme for Android-based compilation of C-MEX S-functions. With this new feature, users can design personalized algorithm according to their requirements in the form of S-functions, which can be called and executed after being compiled by MATLAB server. Finally, through the experiment validation of the three-degree-of-freedom air bearing spacecraft platform, it is proved that the method of Android-based C-MEX S-functions is reliable and efficient, and this scheme well enhances the functionality and mobility of Android-based NCSLab.


Sign in / Sign up

Export Citation Format

Share Document