scholarly journals The Application of Network Functions Virtualization on Different Networks, and its New Applications in Blockchain: A Survey

Webology ◽  
2021 ◽  
Vol 18 (Special Issue 04) ◽  
pp. 1007-1044
Author(s):  
Hayder A. Jawdhari ◽  
Alharith A. Abdullah

Operators of networks are striving to provide functional network-based services, while keeping the cost of deploying the service to a minimum. Network Function Virtualization (NFV) is considered to be a promising model to modify such employment by separating network functions from the basic hardware properties, after which they are converted into the style of software. These are eventually referred to as Virtual Network Functions (VNFs). This separation offers numerous benefits, including the decrease of Capital Expenditure (CAPEX) and Operation Expense (OPEX), in addition to the enhanced elasticity of service preparation. Network Functions Virtualization (NFV) is found to cause a remarkable development or even a technological revolution in terms of network-based services, leading to a decrease in deployment costs for network operators. NFV reduces hardware tool costs and energy exhaustion, and it improves its operational performance whereby the network configuration is part of this optimization. Even so, there are a number of possible security problems which are the main focus in NFV. The present study surveys the applications and opportunities of NFV in terms of IoT, SDN, cloud computing and blockchain. A description of the NFV architecture is presented, and several possibilities of NFV security issues and challenges are discussed. Finally, a systematic idea is provided on the design of a Blockchain Network Virtualization System.

2019 ◽  
Vol 9 (23) ◽  
pp. 5167
Author(s):  
Vincenzo Eramo ◽  
Francesco G. Lavacca ◽  
Tiziana Catena

Network Function Virtualization is based on the virtualization of the network functions and it is a new technology allowing for a more flexible allocation of cloud and bandwidth resources. In order to employ the flexibility of the technology and to adapt its use according to the traffic variation, reconfigurations of the cloud and bandwidth resources are needed by means of both migration of the Virtual Machines executing the network functions and reconfiguration of circuits interconnecting the Virtual Machines. The objective of the paper is to study the impact of the maximum number of switch reconfigurations on the cost saving that the Networking Function Virtualization technology allows us to achieve. The problem is studied in the case of a scenario with an elastic optical network interconnecting datacenters in which the Virtual Machines are executed. The problem can be formulated as an Integer Linear Programming one introducing a constraint on the maximum number of switch reconfigurations but due to its computational complexity we propose a low computational complexity heuristic allowing for results close to the optimization ones. The results show how the limitation on the number of possible reconfigurations has to be taken into account to evaluate the effectiveness in terms of cost saving that the Virtual Machine migrations in Network Function Virtualization environment allows us to achieve.


2019 ◽  
Vol 2019 ◽  
pp. 1-15
Author(s):  
Jian Sun ◽  
Guanhua Huang ◽  
Arun Kumar Sangaiah ◽  
Guangyang Zhu ◽  
Xiaojiang Du

Network function virtualization (NFV) is a new way to provide services to users in a network. Different from dedicated hardware that realizes the network functions for an IoT application, the network function of an NFV network is executed on general servers, and in order to achieve complete network functions, service function chaining (SFC) chains virtual network functions to work together to support an IoT application. In this paper, we focus on a main challenge in this domain, i.e., resource efficient provisioning for social IoT application oriented SFC requests. We propose an online SFC deployment algorithm based on the layered strategies of physical networks and an evaluation of physical network nodes, which can efficiently reduce bandwidth resource consumption (OSFCD-LSEM) and support the security and privacy of social IoT applications. The results of our simulation show that our proposed algorithm improves the bandwidth carrying rate, time efficiency, and acceptance rate by 50%, 60%, and 15%, respectively.


Author(s):  
Raphael Vicente Rosa ◽  
Christian Esteve Rothenberg

Performance benchmarking in Network Function Virtualization (NFV) pose challenging issues due to all moving parts of virtualized infrastructures potentially affecting the packet processing performance of Virtualized Network Functions (VNFs). Despite the advances in best-of-breed network virtualization technologies, the dependencies on the underlying allocated hardware resources, their characteristics and customized configurations, result in benchmarking hazards that call for innovative and standardized testing methodologies towards adequate VNF performance profiling. To this end, we designed and prototyped Gym, a testing framework for automated NFV performance benchmarking we experimentally validated on Open vSwitch as a target VNF. The design principles and implementation of Gym demonstrate an useful apparatus to assist standards organizations formalizing VNF testing methodologies.


2016 ◽  
Vol 2016 ◽  
pp. 1-15 ◽  
Author(s):  
Franco Callegati ◽  
Walter Cerroni ◽  
Chiara Contoli

The emerging Network Function Virtualization (NFV) paradigm, coupled with the highly flexible and programmatic control of network devices offered by Software Defined Networking solutions, enables unprecedented levels of network virtualization that will definitely change the shape of future network architectures, where legacy telco central offices will be replaced by cloud data centers located at the edge. On the one hand, this software-centric evolution of telecommunications will allow network operators to take advantage of the increased flexibility and reduced deployment costs typical of cloud computing. On the other hand, it will pose a number of challenges in terms of virtual network performance and customer isolation. This paper intends to provide some insights on how an open-source cloud computing platform such as OpenStack implements multitenant network virtualization and how it can be used to deploy NFV, focusing in particular on packet forwarding performance issues. To this purpose, a set of experiments is presented that refer to a number of scenarios inspired by the cloud computing and NFV paradigms, considering both single tenant and multitenant scenarios. From the results of the evaluation it is possible to highlight potentials and limitations of running NFV on OpenStack.


2020 ◽  
Vol 5 (11) ◽  
pp. 1328-1333
Author(s):  
Ivan Petrov ◽  
Toni Janevski

The development of the telecommunication networks observed in present and future time is impressive. Today we witness rapid implementation of 5G networks. We can say that this actually is the moment when (artificial intelligence) AI enters at small door but in the beyond 5G world it is expected to have the prime role in smart operation, management and maintenance of non-software defined networking (SDN), network function virtualization (NFV) and especially at SDN and NFV aware networks. Number of standardization body’s and work groups are focused in a way to create a framework that will define the future use of AI and security standards necessary to exist in order to create health environment for the next generation telecommunication infrastructure. In the wireless world AI/Machine learning (ML) has great potential to shake the way we operate and to become foundation of the transformation that leads to the next industrial revolution. Network virtualization gives flexibility and freedom of the telco operators to choose the hardware and network topology they need for AI/ML platforms and big data sets. 5G and IoT create positive environment for AI and ML development and usage. As the network requirements are developed and the number of the users raises, gains are expected to grow with the number of variables and the interactions among them so it becomes impossible to relay on humans to control the network for increased number of variables and this is why AI with ML and automation become beneficial and necessity to run the future networks. AI generally is defined as capacity of mind or ability to acquire and apply knowledge and skills while ML is defined as learning that does not require explicit programming. Combined usage of AI and ML can optimize almost any component of the wireless network, this does not mean that it should be used everywhere mainly because at the end of the day the cost benefit analysis of its usage must be positive. Smart operation, management and infrastructure maintenance (SOMM) networks are defined as: Intelligent, data driven, integrated and agile. Today AI is introduced but in future it will represent the network engine. It is interesting to mention that network security must be upgraded because the network will provide services for massive number of IoT devices that will have variety of functions and requests. AI/ML can improve the security services and to be used in order to elevate them at advanced level. In this text we focus our attention at AI/ML and security scenarios defined for IoT in 5G environment.


Author(s):  
Lalit Pandey

This chapter is focused on the traditional network architecture limitations with NFV benefits. Discussion of NFV architecture and framework as well as management and orchestration has been discussed in this chapter. Cisco VNF portfolio and virtual network functions implementation is included with software implementation of the architecture of NFV (network function virtualization). Management and orchestration functional layers as per ETSI standard. The challenges in NFV implementation is also a concern today, which is a part of this chapter.


Author(s):  
Eric Debeau ◽  
Veronica Quintuna-Rodriguez

The ever-increasing complexity of networks and services advocates for the introduction of automation techniques to facilitate the design, the delivery, and the operation of such networks and services. The emergence of both network function virtualization (NFV) and software-defined networks (SDN) enable network flexibility and adaptability which open the door to on-demand services requiring automation. In aim of holding the increasing number of customized services and the evolved capabilities of public networks, the open network automation platform (ONAP), which is in open source, particularly addresses automation techniques while enabling dynamic orchestration, optimal resource allocation capabilities, and end-to-end service lifecycle management. This chapter addresses the key ONAP features that can be used by industrials and operators to automatically manage and orchestrate a wide set of services ranging from elementary network functions (e.g., firewalls) to more complex services (e.g., 5G network slices).


2019 ◽  
Vol 11 (3) ◽  
pp. 69 ◽  
Author(s):  
Aris Leivadeas ◽  
George Kesidis ◽  
Mohamed Ibnkahla ◽  
Ioannis Lambadaris

Network Function Virtualization (NFV) has revolutionized the way network services are offered to end users. Individual network functions are decoupled from expensive and dedicated middleboxes and are now provided as software-based virtualized entities called Virtualized Network Functions (VNFs). NFV is often complemented with the Cloud Computing paradigm to provide networking functions to enterprise customers and end-users remote from their premises. NFV along with Cloud Computing has also started to be seen in Internet of Things (IoT) platforms as a means to provide networking functions to the IoT traffic. The intermix of IoT, NFV, and Cloud technologies, however, is still in its infancy creating a rich and open future research area. To this end, in this paper, we propose a novel approach to facilitate the placement and deployment of service chained VNFs in a network cloud infrastructure that can be extended using the Mobile Edge Computing (MEC) infrastructure for accommodating mission critical and delay sensitive traffic. Our aim is to minimize the end-to-end communication delay while keeping the overall deployment cost to minimum. Results reveal that the proposed approach can significantly reduce the delay experienced, while satisfying the Service Providers’ goal of low deployment costs.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Qianqiao Chen ◽  
Vaibhawa Mishra ◽  
Jose Nunez-Yanez ◽  
Georgios Zervas

The software defined network and network function virtualization are proposed to address the network ossification issue in current Internet infrastructure. Network functions and services are implemented as software applications to increase the programmability of network. However, involving general purpose processors in data plane restricts the bandwidth of network services. Therefore, to keep both the bandwidth and flexibility, a FPGA platform is suggested as a reconfigurable platform to deliver high bandwidth virtual network functions on data plane. In this paper, the FPGA resource has been virtualized by interconnecting partial reconfigurable regions to deliver high bandwidth reconfigurable processing on network streams. With the help of partial reconfiguration technology, network functions on our platform can be configured without affecting other functions on the same FPGA device. The on-chip interconnect system is further evaluated by comparing with existing network-on-chip system. A reconfiguration process is also proposed and demonstrated that it can be performed on our platform. The process can happen in the real time of network services and it is able to keep the original function working during the download of partial bitstream.


Author(s):  
Bharathkumar Ravichandran

In the fifth generation mobile communication architecture (5G), network functions which traditionally existed as discrete hardware entities based on custom architectures, are replaced with dynamic, scalable Virtual Network Functions (VNF) that run on general purpose (x86) cloud computing platforms, under the paradigm Network Function Virtualization (NFV). The shift towards a virtualized infrastructure poses its own set of security challenges that need to be addressed. One such challenge that we seek to address in this paper is providing integrity, authenticity and confidentiality protection for VNFs.


Sign in / Sign up

Export Citation Format

Share Document