scholarly journals Preparation of Anode Material for Lithium Battery from Activated Carbon

2020 ◽  
Vol 10 (1) ◽  
pp. 91-96
Author(s):  
Sumrit Mopoung ◽  
Russamee Sitthikhankaew ◽  
Nantikan Mingmoon

This research study describes the preparation of corncob derivedactivated carbon to be used as anodematerial for the preparation of lithium ion battery.The corncob was activated at 900 °C for 3 hours with KOH used in a 1:3 weight ratio.The final product was analyzed for chemical, physical, and electrical properties.The results show that the activated carbon is amorphous and contains some graphitic carbon with interconnected nano-channels. Furthermore,carboxyl functional groups were detected on the surface of the activated carbon product.The observed morphological characteristics in terms of surface area, total pore volume, micropore volume, and average pore size are 1367.4501 m²/g, 0.478390 cm³/g, 0.270916 cm³/g, and 2.10872 nm, respectively.In addition, the product also exhibits low electrical resistance in the range 0.706W-1.071W.Finally, the specific discharge capacities at the 1st and the 2nd cycles of the corncob derived activated carbon anode material were 488.67mA h/g and 241.45 mA h/g, respectively with an average of about 225 Ah/kg between the 3rd cycle and the 5th cycle. The averagespecific charge capacities/specific discharge capacities at increasing charging rate of 0.2C, 0.5C, 1C, 2C, and 5C were approximated 190 mAh/g, 155 mAh/g, 135 mAh/g, 120 mAh/g, and 75 mAh/g, respectively, with 100%Coulombic efficiency in all 5 cycles.It was shown that the corncob derived activated carbon anode material has a relatively high rate capability, high reversibility, and rapid and stable capacity when compared to the general of biomass-derived carbon

Clean Energy ◽  
2019 ◽  
Vol 3 (3) ◽  
pp. 211-216 ◽  
Author(s):  
Guanghong Pan ◽  
Wenbin Liang ◽  
Peng Liang ◽  
Quanbin Chen

Abstract Development of new power anode material with both high capacity and high-rate capability for lithium-ion batteries is highly desired. In this paper, a novel soft carbon anode for rechargeable lithium-ion batteries was developed using coal-based mesophase pitch. The structures of the materials were characterized by X-ray diffraction (XRD), Raman, N2 adsorption–desorption, Scanning Electron Microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The electrochemical characteristics of the new anode material were investigated. It was found that the soft carbon anode from coal-based mesophase pitch carbonized under vacuum conditions can deliver higher energy density and higher rate capability compared to soft carbon carbonized under a nitrogen atmosphere. The enhanced electrochemical properties are attributed to smaller nanocrystallites, more porosity, defects and carbon species of the resulting anode material.


2013 ◽  
Vol 1540 ◽  
Author(s):  
Chia-Yi Lin ◽  
Chien-Te Hsieh ◽  
Ruey-Shin Juang

ABSTRACTAn efficient microwave-assisted polyol (MP) approach is report to prepare SnO2/graphene hybrid as an anode material for lithium ion batteries. The key factor to this MP method is to start with uniform graphene oxide (GO) suspension, in which a large amount of surface oxygenate groups ensures homogeneous distribution of the SnO2 nanoparticles onto the GO sheets under the microwave irradiation. The period for the microwave heating only takes 10 min. The obtained SnO2/graphene hybrid anode possesses a reversible capacity of 967 mAh g-1 at 0.1 C and a high Coulombic efficiency of 80.5% at the first cycle. The cycling performance and the rate capability of the hybrid anode are enhanced in comparison with that of the bare graphene anode. This improvement of electrochemical performance can be attributed to the formation of a 3-dimensional framework. Accordingly, this study provides an economical MP route for the fabrication of SnO2/graphene hybrid as an anode material for high-performance Li-ion batteries.


Nanomaterials ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 655 ◽  
Author(s):  
Hoang Kha Nguyen ◽  
Jaehan Bae ◽  
Jaehyun Hur ◽  
Sang Joon Park ◽  
Min Sang Park ◽  
...  

An easy and environmentally friendly method was developed for the preparation of a stabilized carbon nanotube–crystalline nanocellulose (CNT–CNC) dispersion and for its deposition to generate self-standing CNT–CNC composite films. The composite films were carbonized at different temperatures of 70 °C, 800 °C, and 1300 °C. Structural and morphological characteristics of the CNT–CNC films were investigated by X-ray diffraction (XRD), Raman spectroscopy, and scanning electron microscopy (SEM), which revealed that the sample annealed at 800 °C (CNT–CNC800) formed nano-tree networks of CNTs with a high surface area (1180 m2·g−1) and generated a conductive CNC matrix due to the effective carbonization. The carbonized composite films were applied as anodes for lithium-ion batteries, and the battery performance was evaluated in terms of initial voltage profile, cyclic voltammetry, capacity, cycling stability, and current rate efficiency. Among them, the CNT–CNC800 anode exhibited impressive electrochemical performance by showing a reversible capacity of 443 mAh·g−1 at a current density of 232 mA·g−1 after 120 cycles with the capacity retention of 89% and high rate capability.


2015 ◽  
Vol 44 (38) ◽  
pp. 16746-16751 ◽  
Author(s):  
Peixun Xiong ◽  
Guojin Zeng ◽  
Lingxing Zeng ◽  
Mingdeng Wei

Prussian blue analogues, Mn[Fe(CN)6]0.6667·nH2O cubes, were synthesized and exhibited a large capacity, good rate capability and cycling stability with a high Coulombic efficiency for Li-ion intercalation.


Sign in / Sign up

Export Citation Format

Share Document